

Lecture Notes of the Institute
for Computer Sciences, Social-Informatics
and Telecommunications Engineering 34

Editorial Board

OzgurAkan
Middle East Technical University, Ankara, Turkey

PaoloBellavista
University ofBologna, Italy

JiannongCao
Hong Kong Polytechnic University, Hong Kong

FalkoDressler
University ofErlangen, Germany

Domenico Ferrari
Universita CattolicaPiacenra, Italy

MarioGerla
UCLA, USA

Hisashi Kobayashi
Princeton University, USA

SergioPalazzo
University of Catania, Italy

SartajSahni
University of Florida, USA

Xuemin(Sherman) Shen
University ofWaterloo, Canada

MirceaStan
University of Virginia, USA

Jia Xiaohua
City University ofHong Kong, Hong Kong

AlbertZomaya
University ofSydney, Australia

Geoffrey Coulson
LancasterUniversity, UK

Dimiter R. Avresky Michel Diaz

Arndt Bode Bruno Ciciani Eliezer Dekel (Eds.)

Cloud
Computing

First International Conference, CloudComp 2009
Munich, Germany, October 19-21, 2009
Revised Selected Papers

~ Springer

Volume Editors

DimiterR. Avresky
International Research
Instituteon Autonomic Network Computing (IRINAC)
Menradstr. 2, 80634 Munich, Germany
E-mail: autonomic@irinac.com

Michel Diaz
LAAS-CNRS
7 Avenue du ColonelRoche
31077Toulouse Cedex4, France
E-mail: diaz@laasJr

ArndtBode
Leibniz-Rechenzentrum
Boltzmannstr. 1,85748 Garching, Germany
E-mail: bode@lrz.de

Bruno Ciciani
Univesitadi RomaLa Spaienza
Dipartimento di Informatica e Sistematica
00185 Rorna, Italy
E-mail: ciciani@dis.uniromal.it

Eliezer Dekel
IBM ResearchLaboratory, Haifa, Israel
E-mail: dekel@il.ibm.com

Libraryof CongressControl Number: 2010925234

CR SubjectClassification (1998): D.2, C.2, F.l , C.2.4, F.2

ISSN
ISBN-IO
ISBN-13

1867-8211
3-642-12635-9 SpringerBerlin Heidelberg NewYork
978-3-642-12635-2 SpringerBerlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved. whether the whole or part of the material is
concerned. specifically the rightsof translation, reprinting, re-useof illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way,and storage in data banks. Duplication of this publication
or partsthereofis permittedonly underthe provisions of the GermanCopyrightLawof September9, t965,
in its current version, and permission for use must alwaysbe obtainedfrom Springer. Violations are liable
to prosecution underthe GermanCopyrightLaw.

springer.com

© ICST Institutefor ComputerSciences, Social-Infonnatics andTelecommunications Engineering2010
Printedin Germany

Typesetting: Camera-ready by author, dataconversion by Scientific Publishing Services, Chennai, India
Printedon acid-free paper 06/3180 5432 I 0

Preface

Welcome to the proceedings ofCloudComp 2009.
A computing cloudis more thana collection of computer resources, because it pro

vides mechanisms to manage those resources. In a cloud computing platform, software
is migrating from the desktop to the "clouds," promising users, at any time and
anywhere, access to theirprograms anddata.

This year, 44 academic, industrial and student papers from all over the world were
submitted, of which 17 were accepted as regular longpapers. Additionally, threewere
included as short papers on hot topics. The Program Committee appreciates the time
and effort all of the researchers put into preparing their papers. Many thanks also to
the members of the Program Committee and the external reviewers for all of theirhard
work in reading, evaluating, and providing detailed feedback. Without the contribu
tions of both of these groups, CloudComp would not have been such a lively
symposium.

The symposium featured keynote addresses by Jesus Villasante, Head of Unit,
European Commission, Dane Walther, Director of Custom Engineering, Akamai
Technologies Inc. Cambridge, MA, USA, Greg Malewicz, Google, Mountain View,
CA, USA, and Mauro Campanella, Consortium GARR, Italy.

A scientific visit of the Leibniz Supercomputer Centre (LRZ), Bavarian Academy
of Science, Garching (Munich), was organized during the conference. The visit was
hosted by Prof. A. Bode.

We feel that the symposium will grow and develop in its service to the research
community within bothacademia and industry.

D. R. Avresky
Michel Diaz

Bruno Ciciani
ArndtBode

Eliezer Dekel
JavierAlonso

Organization

Steering Committee Chair

1. Chlamtac
D. Avresky

General Chairs

D. Avresky

Program Co-chairs

M.Diaz
B. Ciciani
A. Bode
E. Dekel

Publicity Chair

J. Alonso

CreateNet Research Consortium, Trento, Italy
International Research Institute on Autonomic Network

Computing (IRIANC), Munich, Germany

IRIANC, Munich, Germany

LAAS, CNRS, Toulouse, France
University of Rome, Italy
Technical University of Munich, Germany
IBM Research Laboratory in Haifa, Israel

Technical University of Catalonia - Barcelona
Supercompting Center, Spain

Conference Coordinator

Gabriella Magyar ICST, Brussels, Belgium

Technical Program Committee

1. Arlat
A. Bode
F. Cappello
M. Colajanni
G. Cooperman
T. Coupaye
J. Dongarra
G. Deconinck
M. Dacier
J.e. Fabre
S. Fallis
P. Felber

LAAS, CNRS, Toulouse, France
Technical University of Munich, Germany
INRIA, France
University of Modena, Italy
Northeastern University, USA
FranceTelecom Orange Labs, France
University of Tennessee, USA
University of Leuvcn, Belgium
Symantec, Europe
LAAS,CNRS/ INP-ENSEEIHT, Toulouse, France
British Telecomm Innovate, UK
University of Neuchatel, Switzerland

VIII Organization

A. Ferreira
M. Gerndt
H. Hellwagner
W. luling
G. Malewicz
E. Maehle
F. Quaglia
A. Puliafito
C. Pampu
S. Papavassiliou
K. Pentikousis
1. Schopf
H. Schmeck
H. Schwefel
L. Silva
V. Strumpen
l . Torres
C. Trinitis
M. Vouk

INRIA. Sofia Antipolis, France
Technical University of Munich,Germany
Klagenfurt University, Austria
Karlsruhe Institute of Technology, Germany
Google, USA
University of Luebeck, Germany
University of Rome, Italy
University of Messina, Italy
Huawei Technologies Research, Berlin, Germany
NationalTechnical University of Athens, Greece
VIT, Oulu, Finland
National Science Foundation(NSF), USA
Karlsruhe Institute of Technology, Germany
Aalborg University, Denmark
University of Coimbra, Portugal
IBM Research,Austin, USA
Technical University of Catalonia - BSC, Spain
Technical University of Munich, Germany
North Carolina State University, USA

Table of Contents

Cloud Computing Infrastructure Track Session 1

Executing Distributed Applications on Virtu alized Infrastructures
Specified with the VXDL Language and Managed by the HIPerNET
Framework . 3

Guilherme Koslovski, Tram Truong Huu, Johan Montagnat, and
Pascale Vicat-Blan c Prim et

High Performance Parallel Computing with Clouds and Cloud
Technologies 20

Jaliya Ekanayake and Geoffrey Fox

Cloud Computing Platforms Track Session 1

Cloud@Home on Top of RESERVOIR . 41
Vincenzo D. Cunsolo, Salvatore Distefano, and Antonio Puliafito

AppScale: Scalable and Open AppEngine Application Development
and Deployment . 57

Navraj Chohan, Chris Bunch, Sydn ey Pang, Chandra Krintz,
Nagy Mostafa, Sunil Soman, and Rich Wolski

Cloud Computing Infrastructure Track Session 2

Mitigating Security Threats to Large-Scale Cross Border Virtu alization
Infrastructures . 73

Philippe Massonet, Syed Naqvi, Francesco Tusa,
Massimo Villari, and Joseph Latanicki

Activity Control in Application Landscapes: A Further Approach to
Improving Maint ainability of Distribu ted Application Landscapes 83

Oliver Daut e and St efan Conrad

PerfCloud: Performance-Oriented Integration of Cloud and GRID. 93
Valent ina Casola, Massimiliano Rak, and Umberto Villano

Combining Cloud and Grid with a User Interface 103
Jiaqi Zhao, Ji e Tao, Mathias Stu empert, and Moritz Post

X Table of Contents

Cloud Computing Infrastructure Track Session 3

A Performance Analysis of EC2 Cloud Computing Services for Scientific
Computing . 115

Simon Ostermann, Alexandra Iosup, Nezih Yigitbasi, Radu Prodosi,
Thoma s Fahringer, and Dick Epema

Cyberaide Virtual Applicance: On-Demand Deploying Middleware for
Cyberinfrastructure . 132

Tobias Kurze, Lizhe Wang, Gregor von Laszewski, Jie Tao,
Marcel Kun ze, Fugang Wang, David Kram er, Wolfgang Karl, and
Jaliya Ekanayake

Cloud Computing Platforms Track Session 2

Service Supervision Patterns: Reusab le Adaption of Composite
Services 147

Masahiro Tanaka, Torn Ishida, Yohei Murakami , and Donghui Lin

Cloud Computing Platforms Track Session 3

Self-managed Microkernels: From Clouds towards Resource Fabrics. 167
Lutz Schubert, St efan Wesner, Alexander Kipp , and
Alvaro Arenas

Proactive Software Rejuvenation Based on Machine Learning
Techniques 186

Dimitar Simeo nov and D.R. Avresky

Dynamic Load Management of Virtual Machines in Cloud
Architectures . 201

Mauro Andreolini , Sara Casolari, Michele Colajanni, and
Michele Messori

Cloud Computing Platforms Track Session 4

Dynamic Service Encapsulation . 217
Alexand er Kipp , Lut z Schubert , and Christian Geuer-Pollmann

Modeling Movable Components for Disruption Tolerant Mobile Service
Execution. 231

Rene Gobner, Karin Anna Hummel, and Hans-Peter Schwefel

Table of Contents XI

Cloud Computing Applications Track Session 1

Virtual Dist ro Dispatcher: A Light-Weight Desktop-as-a-Service
Solution . 247

S. Cristofaro, F. Bertini, D. Lamanna, and R. Baldoni

On Cost Modeling for Hosted Enterprise Applications 261
Hui Li and Daniel Scheibli

Author Index 271

The FEDERICA Project:
Creating Cloud Infrastructures

Mauro Campanella

ConsortiumGARR,
Via dei Tizii 6,00185 Roma, Italy

Mauro.Campanella@garr .it

Abstract. FEDERICA is a European project started in January 2008 that cre
ated a scalable, Europe-wide, clean slate, infrastructure to support experiments
on Future Internet. The key architectural principle is virtualizationboth in com
puter systems and in network equipment and circuits. The project "slices" its
substrate to offer "virtual infrastructures" (slices) made of computing elements
and network resources to researchers. The user may fully configure the re
sources, including the slice topology. The slices can be seen as "cloud infra
structures", generalizing the concept of "cloud computing" and enhancing that
of "Infrastructure as a Service". A section elaborates on the main open issues:
reproducibility, resource description, monitoring and mapping of virtual
resources to the physical substrate.

Keywords: NREN, virtualization, Future Internet, FIRE, GEANT.

1 Introduction

The FEDERICA project [1] has been devised to provide support and research on
current and Future Internet technologies and architectures. The project is linked to the
European FIRE initiative [2] and the European Future Internet Assembly [3] . Other
similar initiatives exists worldwide, e.g. GENI [4] in the United Stated in Europe and
AKARI [5] in Japan.

Such experimentation requires new environments that combine flexibility, a mini
mum set of constraint and full control of the environment for the researchers. A clean
slate approach has been advocated by the GENI, which initially planned to build a
dedicated, new infrastructure.

The constant developments of technology in computing and in networks, coupled
with the virtualization capabilities allow a new approach, which leverage existing
infrastructures to create new ones . FEDERICA is built on top of the National Re
search and Education Networks (NREN [6]) in Europe, which In the last years created
a strong multidomain hybrid network infrastructure with advanced capabilities. Virtu
alization technologies allow creating on this large physical footprint more than one
infrastructure and each of them appearing independent and isolated, eventually to the
wavelength level.

The project adds to the basic network resource (capacity) and network functional
ities (e.g. switching, routing) computing elements to create virtual infrastructures with
rich functionalities .

XIV M. Campanella

The paper describes the project architecture , its implementation and the challenges
posed with particular emphasis to "cloud computing" developments .

2 The FEDERICA Project

The project [I] partners include a wide range of stakeholders on network research,
European National Research and Education Networks (NRENs), DANTE, TERENA,
academic and industrial research groups and vendors. In the following the architecture
will be described as well as its current implementation .

2.1 Project Goals and Objectives

The FEDERICA project scope, as defined in the description of work, is to:

Create an e-Infrastructure for researchers on Future Internet allowing research
ers a complete control of set of resources in a "slice", enabling disruptive ex
periments
Support research in virtualization of e-Infrastructures integrating network re
sources and nodes capable of virtualization (V-Nodes). In particular on multi
(virtual)-domain control, management and monitoring, including virtualization
services and user oriented control in a federated environment.
Facilitate technical discussions amongst specialists, in particular arising from
experimental results and disseminating knowledge and NREN experience of
meeting users' requirements .
Contribute with real test cases and results to standardization bodies, e.g. IETF,
ITD-T, OIF, IPsphere.

2.2 Architecture

2.2.1 Requirements
As the scope is focused on a research environment on new technologies, the following
set of requirements for the infrastructure have been assumed:

Be technology agnostic and neutral (transparent) to allow disruptive and novel
testing, as to not impose constraints to researchers . The requirement is valid for
all networking layers, not just the application layer and extends to the operating
system used.
Ensure reproducibility of the experiments, i.e. given the same initial conditions ,
the results of an experiment are the same. This requirement is considered of par
ticular importance.
Provide to the user complete control and configuration capabilities within the
assigned resources
Allow more than one user group to run experiments at the same time, without
interference .
Open to interconnect / federate with other e-Infrastructures and Internet. This
last requirement plans for interoperability and migration testing.

The FEDERICA Project: Creating Cloud Infrastructures XV

2.2.2 Framework and Design
The requirements suggest two key framework choices for the infrastructure, whichare
at the core of design:

The simultaneous presence of computingand networkphysical resources. These
resources form the substrateof the infrastructure.
The use of virtualization technologies applied both to computing and network
resources. Virtualization will allow creating virtual, un-configured resources.

Virtualization is defined as the capability to create a virtual version of a physical
resource, both in the computingand networkenvironment. The virtual resources (e.g.
a virtual circuit, a disk partition, a virtual computer) are usually created by segment
ing a physical resource. Virtualization may create un-configured (clean) virtual re
sources,e.g. an image of the hardware of a computing element on which (almost) any
operating system can be installed, a point-to-point network circuit, a portion of disk
space. Those resources can be then tailored to various needs and even moved from a
virtualization-aware platformto another.

Such framework brings to a design in which the infrastructure is considered made
of two in two distinct levels (see for a pictorial representation):

1. The virtualization substrate. The physical infrastructure which contains all the
hardware and softwarecapable to create the virtual resources;

2. The level containing all virtual infrastructures. Each containing the virtual re-
sourcesand the initial networktopology connectingthem.

The virtualization substrate is a single administrative domain. The virtual infrastruc
tures (VI or "slices") may be in principle unlimited, in practice a large number, re
stricted by the physical resources available and the requested characteristics for the
slice.

Two basic resourceentities are defined:

1. Connectivity. In form of a point to point circuit with or withoutassured capacity
guarantees and withor withouta data link protocol (a "bit pipe")

2. A computing element, offering the equivalent of a computer hardware contain
ing at least RAM, CPU and one network interface, mass storage is optional, al
though usually available. The computing element is capable of hosting various
operatingsystemsand performalso performfunctionalities (e.g. routing)

To minimize the load on the physical resources and the interference between virtual
resources, the network topology has a high level of meshing. Where virtualization is
not available in hardware, as on most of network interfaces for computers, more
hardware is installed. As a design principle, the infrastructure would favour testing of
functionalities , protocols and new ideas, rather than providing a laboratory for very
high performance studies.

Following the framework outlined above, FEDERICA is designed in two layers.
The lower layer is the substrate an it's made of physical resources, both networkand
computing elements, each capable of creating "virtual" resources of their kind. The
resource sets, or slices, managedby the user, composethe upper layer.

Given the sophisticated NREN network architecture, a distributed infrastructure
can be engineered, with various Points of Presence on the top of the GEANT [7]

XVI M. Campanella

backbone, interconnecting several NRENs in Europe . Figure 1 depicts pictorially the
design of the infrastructure built on top of the existing NREN and GEANT production
environment. The virtual infrastructures (slices) are shown on the top of the picture.
More than one slice is active at the same time.

Router/Switch
Host for Virtual
nodes

G_A.....~ .. ._ ••__ .. _._ __,

Fig. 1. Pictorial representation of FEDERICA

The figure represents the slice in vertical format for sake of clarity and to show that
there is no dependency or hierarchy between them. Each slice may contain a virtual
resource coming from any part of the substrate. The same physical node, as an exam
ple, can provide virtual systems to more than one slice. A virtual router can be cre
ated in a Juniper node (ensuring complete independence between the virtual routers)
or by a virtual system running the routing suite.

3 The Infrastructure Implementation

The infrastructure is built using:

A mesh of one Gigabit Ethernet circuits provided by the GEANT2 backbone .
The circuits are initially at one Gbps as this capacity allows slicing to still high
speed links and it is still affordable as contribution by the participating NRENs.
Most of the circuits are created over SDH using generic framing procedure and
virtual concatenation. Figure 2 represents the current topology
Network equipment. Programmable high-end routers/switches : Juniper Net
works MX480 with dual CPU and 1 line card with 32 ports at 1Gb Ethernet. The
MC functionalities include virtual and logical routing, MPLS, VLANs, IPv4,
IPv6. The MX 480are installed in four core Points of Presence and 2 MX480 are
equipped with Ethernet line cards with hardware QoS capabilities . Smaller
multi-protocol switches (Juniper EX series) are installed in non-core PoPs.

The FEDERICA Project: Creating CloudInfrastructures XVII

Computing equipment. PC-based nodes (V-Nodes) running virtualization soft
ware, capable of implementing e.g., open source software routers and emulating
end-user nodes. Each PC contains 2 x Quad core AMD running at 2 GHz, 32GB
RAM, 8 network interfaces, 2x500GB disks. The V-Nodes are connected to the
Juniper routers .

The initial choice of the virtualization software for the V-nodes is VMware [8], the
free version of ESXi. This choice has been done after a review of other virtualization
software (e.g. XEN). In particular it has been evaluated the Application Programming
Interface, the availability of usage examples and expertise and an upgrade path to
better management using not-for-free version of the software. The capabilities and
performance of the free version have been adequate for the current requirements .

These building blocks of the substrate pose very few constraints to the user. In the
current status of the infrastructure the most significant one is that the data link layer is
fixed to Ethernet framing. Future development of FEDERICA may permit access to
optical equipment to overcome this limitation.

'.-
r __ "

I ., ..-..

Fig. 2. FEDERICA topology on a mapof Europe

Infrastructure
1 Gbps circuits

- Core links
- non-Core

2.3.1 Topology
The topology is composed
of 13 physical sites. Of
these points of presence
(PoP) a full mesh of four is
equipped with MX
router/switches and it is
considered the core. The 9
non-core nodes are
equipped by EX switches .
The core nodes are
equipped by 2 V-Nodes the
non-core PoPs host one
node each. The FEDE
RICA physical topology is
depicted in Figure 2.

The design placed par
ticular importance on the
resiliency and load balanc
ing of the network, based on
GEANT2's infrastructure,
and resources availability at
partners' locations.

The FEDERICA sub
strate is configured as an IPv4 and IPv6 Autonomous System with both public and
private addresses. The infrastructure is connected to Internet using the Border Gate
way Protocol and receives full routing tables in the four core PoPs.

The infrastructure is centrally managed and monitored by a Network Operation
Centre. The NOC has also the task to create the slices. The infrastructure (substrate) is
a single domain that contains all the physical resources (point to point circuits, nodes)

XVIII M. Campanella

in all PoPs. The domain does not contain the optical equipment of GEANT used to
transport the circuits between PoPs.

2.3.2 Resource Virtualization and Slice Creation
The process to create a virtual system is rather straightforward and can be based on an
image provided by the user or on template of various operating systems. The virtual
ization capabilities in the network are also evolving, as described in [9]. The article
reviews the current research in a Network Virtualization Environment (NVE) and the
many challenges associated. The initial choice in FEDERICA is to use VLANs and
use QoS techniques for circuit virtualization; MPLS may be applied when needed.

The slice creation procedure definition is constantly developed and may change
slightly to incorporate the feedback received after the first user feedback. The slice
creation includes a manual step to map the virtual resources to the physical substrate.
The step is manual to ensure that the mapping ensures the best reproducibility of the
behaviour of the virtual resources.

The current slice creation process consists of the following steps. First, the re
searcher that wants to perform an experiment over the FEDERICA infrastructure is
required to provide the NOC with the desired topology, including requirements for the
nodes and the network (each V-node RAM size, CPU power, mass storage space,
topology and bandwidth between the V-Nodes, routing or switching functionalities ,
protocols) . The request may be for un-configured resources , that the user will config
ure directly, even substituting protocols , or resources with a n initial configuration,
e.g. IP routing.

Once the NOC receives the slice description and resource requirements , the NOC
maps the logical topology requested on the physical topology of the substrate and
chooses the sites (PoPs) from which physical resources will be allocated . Besides
instantiating all the resources requested by the user, the NOC needs to instantiate an
extra virtual machine, that act as a gateway between Internet and the slice: the Slice
Management Server . Access control of the Slice Management Server is performed by
means of identity credentials managed by a RADIUS server.

The next step for the NOC is to instantiate Ethernet VLANs to connect the slice re
sources and create the topology required by the researcher. Finally, the NOC needs to
setup the Slice Management network for the user that will connect the Slice Manage
ment Server to the management interface of each one of the managed resources in the
slice (V-Nodes, logical routers, software routers). The connection is performed creat
ing virtual interfaces in all resources and one in the Management Server in the same
IP subnet (usually private) and creating an additional VLAN linking them. This sub
net is initially the only IP path for the user to connect to the slice resources when
accessing from Internet the Management server.

2.3.3 User Accessand Support
When the NOC has finished the slice creation process, they inform the researchers that
the slice is ready to use. The following information needs to be included: the public IP
address of the Virtual Slice Management Server plus the credentials to access it, the
credentials for accessing the Juniper logical routers and/or the software routers, and
finally the IP addressing scheme of the Virtual Slice Management Network. Now the
user is ready to access his slice through the Virtual Slice Management Server.

The FEDERICA Project: Creating CloudInfrastructures XIX

IUse,Roul3' 1 (iogol)

I

User

AlJtertcaea User j2
fa sk:eax:ess •

FEDffilCA . .
RADIUSsever

Fig. 3. Researcheraccessing a simple FEDERICA slice

In the example in Figure 3 the user has requested a simple slice consisting of two
virtual servers connected through a Juniper logical router. The NOC has alread y setup
these three resource s, connected them through a VLAN (black line at the bottom of
the Figure), instantiated the Virtual Slice Management Server and created the Slice
Management Network (cloud at the centre of the Figure). The researcher connects to
the Virtual Slice Management Server using the credenti als provided by the NOC, and
is authenticated against the FEDERICA Authentication RADIUS Server. If the au
thentication is successful, the user can access all his/her nodes via the management IP
interfaces.

Besides remote access to the resources, another complimentary mechanism is un
der investigation. VMware virtual machines can be configured to be accessed through
remote VNC connections (the virtual machine clients would connect to a special port
of the physical machine where VMware is installed). By exploiting this mechanism
users would have access to the console of their virtual servers, but they would also be
able to interact with graphical user interfaces and to even access the BIOS of the
server ; i.e. they would have full control of the virtual machine.

During the initial FEDERICA operation, all the steps explained in these two sec
tions will be performed either manually or using a heterogeneous set of tools (web
portal for users, VMware Infrastructures application, the remote console of the de
vices, VNC clients, monitoring tools). However, a tool bench that provides a unified
environment to operate the FEDERICA infrastructure and use the FEDERICA slices
is being developed, and will be progressively deplo yed and used by the NOC and the
FEDERICA users.

XX M. Campanella

3 Challenges

3.1 Real vs, Virtual

The reproduc ibility and the stability of the behaviour of the virtual resources is a
fundamental requirement for quantitative evaluations of new ideas. As an example , a
virtual circuit may not be capable of offering a constant, fixed amount of bit per sec
ond, and a virtual computer image may not provide a constant CPU usage.

The quality of a virtual resource can then be defined as a function of the difference
between the behaviour of the virtual and the physical resource. The difference is due
to two main independent causes:

Sharing of the physical resource with other virtual resources
The virtualization technology itself, usually a layer placed between the physical
resources and the virtual ones

Hardware assistance for virtualization has been introduced recently to reduce such a
difference . Since 2005 the main CPU manufacturers have added virtualization
friendly extensions, in particular related to protection rings.

QoS is considered in both resource types: connectivity and computing element.
Computing element s in FEDERICA have been chosen to provide specific func

tionalit ies in hardware , like virtualization-aware CPUs. Some circuits are connected
to Quality of Service capable line cards in the Juniper MX. In other cases, where
hardware was not available, the resources have been adequately increased, to avoid
any overbooking and minimize contention. It is possible then to create a slice with a
set of resources , which exhibits, singularly, a known behaviour in all condition s.

Virtual resource performance measurements are ongoing in FEDERICA.
Assuring the QoS of a set of connected resources is more complex and under

evaluation. While for a single virtual computer or link it is possible to carefully con
figure its performance, the complexity increases with the number of resources in
volved. The classic problem of guaranteeing an end-to-end quality of service of an IP
flow exemplifies the issue. In case of virtual infrastructures, as in the case of Internet
traffic, probably most of the resources do not require strict guarantees, but rather "best
effort" behaviour.

In the particular case of a geographically distributed set of resources, the resource
synchronization is more complex due to the longer delay, making the issue harder to
solve.

3.2 Virtualization Service Definition and Automation of Procedures

A service to create "virtual infrastructures" (i.e. slices) needs more dynamic and
automated procedure s. Such a service opens the possibility to federate with other
infrastructures and to develop new business models with the user virtual infrastructure
extending in many domains. To achieve these goals a standardisation of resource
description is required . The design of FEDERICA identified two basic entities (com
puter and point-to-point circuit) each with a set of characteristics and a set of relation
ship between them.

The FEDERICA Project: CreatingCloudInfrastructures XXI

The most complex step in automating the service is the definition of the logic and
the rules to map virtual resources to physical resources in such a way that the use of
the substrate is fair and that the resources comply with a service level agreement,
when requested.

3.3 Complexity

The complexity of the systems based on virtualization, in particular when coupling
network and computin g resources, increases fast with the increase of number of re
sources. The complexity may actually reduce the reliabil ity and the quality of the
system, increasing its operational cost for management and problem resolution.

It is worth underling that virtualization is not restricted to a single layer, but allows
recursivity. Multiple virtual networks stacked on the same physical infrastructure may
be recursively created , as an example. Such advances require better ad-hoc support in
the hardware and the development of new standards for virtual resource interaction. In
particular the need is for a more rich information system, which tracks the relation
ships between entities (virtual or real).

4 Conclusions and Next Steps

An infrastructure substrate based on virtualization both on computing and network
resources is a novel approach to provide an ideal environment for innovative research
and services. The substrate can create virtual infrastructures containing any combina
tion of the basic, "raw" fundamental virtual resources in arbitrary topologies and
hosting any operat ing system and application type. Such virtual infrastructures are
decoupled from their physical location, albeit exhibiting the requested functionalities,
appearing as "cloud infrastructures" .

The initial exper ience of the FEDERICA project with its users is that:

There are very few constraints, except the amount of physical resources avail
able in the substrate when reproducibility is requested.
It' s possible to easily interconnect the slices with the current Internet. Two
"cloud infrastructures" can be connect through Internet to validate the behaviour
of application in real-life environment;
A slice may allow the user to fully control and configure almost all communic a
tion and computing layers;
A "Cloud Infrastructure" can be reconfigured in a very short time, even manu
ally. Resources can be added, subtracted or restarted also in a short time.
The presence of computing capabilitie s in the infrastructure enables new usage
models and service. In particular increases resiliency , as functionalities and even
whole "infrastructures" may move in the substrate continuing to work.

The main challenges are related to the reproducibility of the behaviour of the virtual
resources and to the complex ity of the overall system, in particular the substrate. The
current size of FEDERICA is still well manageable and does not present issues. Man
agement and control of distributed, parallel, virtual infrastructures, which may com
municate among them and with the open Internet, are also key functions in the next

XXII M. Campanella

generation networks. The FEDERICA projectwillcontinue to develop experience and
draft a model for managing and using virtual infrastructures as a combination of net
works and systems.

Acknowledgments

The FP7 project FEDERICA is partially supported by the European Commission
under the Grant Agreement No.: RI- 213107. The author acknowledges the funda
mental contribution of all projectpartners.

References

1. FEDERICA, Federated E-infrastructure DEdicated to Researchers Innovating in Computing
Architectures , European Commission co-funded in the 7th Framework Work Programme,
project n. RI-213107, http : / /www. fp7 - federica . eu / and documents therein

2. Future Internet Research and Experimentation,
http : / / cordis .europa .eu/fp7 /ict /fire /

3. Future Internet Assembly, http : / /www. fu ture-internet. eu /
4. Global Environment for Network Innovation, http : / /www.geni .net
5. AKARI Architecture Design Project, http: / /akari-project . nict . go . jp /eng /

index2 .htm
6. For a detailed analysis of NRENs in Europe and their role, see the documents (in particular

the TERENA compendium), http: / /www. terena. org/publications /
7. GEANT2, the European Research and Education backbone, http: / /www.geant2.net
8. VMware , http : / /www.wmware .com
9. Chowdhury, N.M.M.K., Boutaba , R.: Network Virtual ization: State of the Art and Research

Challenges . IEEE Communications Magazine, 20-26 (July 2009)

Akamai and Cloud Computing

DaneS. Walther

Akamai Technologies,
8 Cambridge Center, Cambridge, MA, 02139, USA

dsw@akamai .com

Abstract. Since 1999, Akamai has built a reliable, Internet-scale, globally dis
tributed system with 50,000+ servers spread across 900+ networks and 70+
countries. Akamai's technology has transformed the Internet into a predictable,
scalable, secure, and high-performance platform for anyone doing business
online. Cloud computing proposes to transform the way IT is consumed and
managed with promises of improved cost efficiencies, accelerated innovation,
faster time-to-market , and the ability to scale applications on demand. However,
as companies begin to implement cloud solutions, the reality of the cloud comes
to bear. Most cloud computing services are accessed over the Internet, and thus
fundamentally rely on an inherently unpredictable and insecure medium. In or
der for companies to realize the potential of cloud computing, they will need to
overcome the performance, reliability, and scalability challenges the Internet
presents. This talk will take a look at the cloud computing arena today, several
issues that impact applications running over the Internet, and the techniques that
Akamai uses for optimization of the cloud. The talk will describe technologies,
and their underlying architecture, such as route, protocol, and application
optimization that are used by Akamai to enhance the speed and reliability of
applications and services delivered across the Internet. The talk will also delve
into the design principles that guide Akamai ' s development and deployment
strategies. These guidelines enable Akamai to efficiently operate a globally
distributed system within the cloud.

Models of Computation in the Cloud

Grzegorz Malewicz

Google, Inc., Mountain View, CA 94043, USA
malewicz~google .com

Abstract. Many companies , including Google, operate datacenters
consisting of networked commodity computers. Solving practical com
putational problems on such datacenters can be difficult because of sev
eral challenges. Input data can be significantly imbalanced, resulting in
hotspots. Individual computers can fail. Even in the absence of failure
computers can work at varying paces, introducing delays. Many models
of computation have complicated semantics, making programming diffi
cult , and some theoretical models do not have any scalable and efficient
realization that is suitable for industrial use.

Google has introduced several models of computation that meet these
challenges. The best known example is Mapfleduce [Dean, J., and Ghe
mawat , S.: MapReduce: Simplified Data Processing on Large Clusters.
OSDI, p137-150 (2004)] where input records are transformed and inter
mediate records are grouped by key and passed to a reduce operation.
Other example is Pregel [Malewicz, G., Austern , M. H., Bik, A. J. C.,
Dehnert , J. C., Horn , I. , Leiser, N., and Czajkowski, G.: Pregel: A System
for Large-Scale Graph Processing . PODC, p6 (2009)], a graph comput
ing system where vertices send messages to one another in a series of
iterations separated by synchronization barriers. Despite the simplicity
of these models , many useful algorithms can easily be expressed in them .

In this talk I will describe these models, the challenges in imple
menting them, and the techniques that led to th e first successful sort of
IPB of data in 6h 2m [Sorting IPB with MapReduce, http:/ /googleblog .
blogspot. com/2008 /11 /sorting-lpb-with-mapreduce.html (2008)].

Keywords: models of computation, cloud computing, distributed
systems , high-performance computing.

Cloud Computing Enabling the Future Internet

JesusVillasante

EuropeanCommission, DG InformationSocietyand Media, Unit 0 .3
BU25 3/134, 1049Brussels, Belgium

Jesus .Villasante@ec .europa.eu

Abstract. The Future of the Internet is nowadays a hot topic for researchers and
technology developers worldwide. The structural limitations of today's Internet
in terms of scalability, flexibility, mobility, security and robustness of networks
and services are increasingly being recognised world-wide. Much research and
development is underway, aiming to avoid the current network limitations and
to develop new online services and applications that meet the increased expec
tations among users, businessesand governments.

Cloud Computing is expectedto becomeone of the drivers for the take up of
online services and applications. It helps to meet the emergingdemands of open
innovation and flexibility required for global service platforms. There is already
a lot of commercial activity around Cloud Computing, and current solutions
have demonstrated significant results and also the potential of the technologies.
On the other hand, important improvements are still required before Cloud
Computing becomes a mature technology; major issues still being security,
interoperability, cross-border data protection or running very complex legacy
applications.

Europe can seize the opportunity, through its research programmes for the
Future Internet, and provide solutions to the limitations of the current technolo
gies. In addition, an adequate policy and regulatory framework can drive the
growth of the software sector and facilitate the necessary transformations in the
European software industry.

Cloud Computing Infrastructure

Track Session 1

Executing Distributed Applications on
Virtualized Infrastructures Specified with the

VXDL Language and Managed by the
HIPerNET Framework

Guilherme Koslovski", Tram Truong Huu",
Johan Montagnat", and Pascale Vicat-Blanc Prim et '

1 INRIA - University of Lyon
guilherme. koslovski~ens-lyon. fr , pascale .primet~inria .fr

2 University of Nice - 138
tram~polytech .unice .fr

3 CNR8 - 138
j ohan~i3s .unice .fr

Abstract . With th e convergence of computing and communicat ion, and
the expansion of cloud computing, new models and tools are needed
to allow users to define, create, and exploit on-demand virtual infras
tructures within wide area distributed environments . Optimally design
ing customized virtual execut ion-infrast ructure and executing them on a
physical substrat e remains a complex problem. This paper presents th e
VXDL langu age, a language for specifying and describing virtual infras
tructures and the HIPerNET framework to manage them. Based on the
example of a specific biomedical applicat ion and workflow engine, this
pap er illustrates how VXDL enables to specify different custo mized vir
tu al infrast ruct ures and the HIPerNET framework to execute them on
a distributed substrate. The pap er presents experiments of th e deploy
ment and execution of this applicat ion on different virtual infrast ructures
managed by our HlPerNet system. All the experiments are performed on
the Grid '5000 testb ed subst rate .

K eywords: Virtual Infrastructure as a service, resource virtualization,
applicat ion mapp ing, graph embedding problem , workflow language,
topology language.

1 Introduction

The convergence of communication and computat ion portrays a new vision of the
Internet. It is becoming a worldwide cloud increasingly embedding th e compu
tati onal and storage resources th at are able to meet the requirements of emerg
ing applicat ions. This resulting vision of a global facility, that brings togeth er
distributed resources to build large-scale computing environments, recalls and
extends the promising vision of Grid comput ing, enabling both data-intensive
and computing-intensive applications. In this context , the concept of virtual
ization is a powerful abst racti on. It enables an efficient sepa ration between the

D.R. Avresky et a l. (Ed s.) : Cloudcomp 2009 , LNI CST 34, p p . 3-19, 2010 .
© Inst itute for Co mputer Sciences, Social-Informatics a nd Telecom muni ca t ion s Engineering 2010

4 G. Koslovski et al.

service and application layers on one hand and the physical resources layer on
the other hand. The OS-level virtual machines paradigm is becoming a key fea
ture of servers, distributed systems , and grids. It simplifies the management of
resources and offers a greater flexibility in resource usage. Each Virtual Ma
chine (VM) a) provides a confined environment where non-trusted applications
can be run, b) allows establishing limits in hardware-resource access and us
age, through isolation techniques, c) allows adapting the runtime environment
to the application instead of porting the application to the runtime environment
(this enhances application portability) , d) allows using dedicated or optimized
as mechanisms (scheduler, virtual-memory management, network protocol) for
each application, e) enables applications and processes running within a VM to
be managed as a whole. Extending these properties to network resources (links
and equipments) through the concept of "virtual infrastructure" , the abstrac
tion of the hardware enables the creation of multiple, isolated, and protected
organized aggregates on the same set of physical resources by sharing them in
time and space. The virtual infrastructures are logically isolated by virtualiza
tion . The isolation also provides a high security level for each infrastructure.
Moreover, virtualizing routers and switching equipments enables the customiza
tion of packet routing , packet scheduling, and traffic engineering for each virtual
network crossing it.

However, programming applications on large-scale distributed environments
is difficult. Defining the optimal infrastructure to execute them is another issue.
The flexibility offered by virtual infrastructures could make the problem even
more complex. Promising work on workflow has been done in the area of ap
plication development to optimize their usage of distributed environments. This
paper proposes to explore how this work can also benefit to the composition of
virtual infrastructures.

The rest of the paper is structured as follows. In section 2, we define our
model of customized Virtual Private eXecution Infrastructures named VPXI.
To specify these VPXIs we define a description language for VPXI specification
and modeling, Virtual eXecution Description Language, VXDL. Section 3 details
the process for mapping an application on physical resources in a virtualized
infrastructure context. In section 4 we illustrate the application mapping through
an example with the Bronze Standard workflow. In section 5, we develop our
combined network and system virtualization approach embedded in the HIPer
Net software and report the experiments on a real-scale testbed using the medical
image analysis application. Section 6 discusses related works. Finally, conclusions
and perspectives are developed in section 7.

2 The Virtual Private eXecution Infrastructure Concept

2.1 The VPXI Concept

We define the Virtual Private eXecution Infrastructure (VPXI) concept as a
time-limited interconnection of virtual computing resources through a virtual
private overlay network. Ideally, any user of a VPXI has the illusion that he is

Executing Distributed Applications on Virtualized Infrastructures 5

using his own distributed system, while in reality he is using multiple systems,
part of the global system . The resulting virtual instances are kept isolated from
each others. The members of a VPXI have a consistent view of a single private
TCPl IP overlay, independently from the underlying physical topology. A VPXI
can span multiple networks belonging to disparate administrative domains . Users
can join from any location, deploying and using the same TCPl IP applications
they were using on the Internet or their intranet.

A VPXI can be formally represented as a graph in which a vertex is in charge
of active data-processing functions and an edge is in charge of moving the data
between vertices. A VPXI has a life time and can be requested online or reserved
in advance. It is described and submitted as a request by a user. Then, if accepted
by the operating framework, it exists as a descriptor and has an entry in a VPXI
table until its release time . During the activation phase, the VPXI runs in the
data plane and is represented in the control plane of each allocated equipment.

2.2 VXDL: VPXI Description Language

A VPXI specification comprises the recursive description of: a) individual end
resources or resource aggregates (clusters) involved, b) performance attributes
for each resource element (capacity) , c) security attributes, d) commercial at
tributes, e) temporal attributes, f) elementary functions , which can be attributed
to a single resource or a cluster (e.g. request of computing nodes, storage nodes,
visualization nodes, or routing nodes) , g) specific services to be provided by
the resource (software), h) the virtual-network's topology, including the perfor
mance characteristics (typically bandwidth and latency), as well as the security,
commercial, and temporal attributes of the virtual channels. Figure 1 illustrates
this concept, representing a virtual infrastructure composed by the aggregation
of virtual machines interconnected via virtual channels. It shows two virtual
routers (vertices rvA and rvB) which are used to interconnect and perform the
bandwidth control among the other virtual resources (vertices Tv I to 8). The
virtual routers can independently forward the traffic of the different virtual in
frastructures which share the same physical network. Each edge represents a
virtual link (as lvi and Iv2) with different configurations , used to interconnect a
pair of virtual resources.

To enable the specifications and the manipulation of these VPXI entities we
propose the VXDL (Virtual Infrastructure Description Language) [9]. It allows
the description not only of the end resources, but also of the virtual network's
topology, including virtual routers and timeline representation. Implemented
with the XML standard, VXDL helps users and applications to create or change
VPXI specifications". The VXDL grammar is divided in Virtual Resources de
scription, Virtual Network Topology description, and Virtual Timeline descrip
tion. A key aspect of this language is that these descriptions are partially op
tional : it is possible to specify a simple communication infrastructure (a virtual
private overlay network) or a simple aggregate of end ressources without any

1 :'vIore information about VXDL is provided on
http://wvv.ens-lyon .fr/LIP/RESO/Software/vxdl

6 G. Koslovski et al.

(Iv 1)
virtual link
bandwidth min 10Gbps
between trvA port 1. rv B port 1)

(r v A and rv B)
virt ual routers
ports 3
memoryJam min (2GB)

(rv 1 - rv 8)
funct ion: comput ing
size (5. 10)
memoryJam min (1GB)

(Iv 2)
virtual links
bandwidth min 5Gbps
between f(rv A port 2. rv 5). trv A port 3. r v 71.
trv B port 2. rv 3). trv B port 3. rv 4)J

Fig . 1. Example of a VPXI composition using graph representation

network topology description (a virtual cluster or grid). Below, we detail the key
aspects of this language.

Virtual Resources Description: This part of VXDL grammar enables users
and applications to describe, in a simple and abst ract way, all the required
end hosts and host groups. VXDL allows the basic resource parametrization
(e.g. minimum and maximum acceptable values for RAM memory and CPU
frequency). An important feature of VXDL is th at it proposes cross-layer pa
rameters. With the specificat ion of anchor and the number of virtual ma chines
allocated per physical host users can directly interact with lower layers and trans
mit applicat ion-specific information. The anchor parameters corresponds to a
physical allocation const raint of a VPXL Indeed, in theory a VPXI can be al
located anywhere in a virtualized substrate, but sometimes it is desirable th at
a virtual end host (or group) be positioned in a given physical location (e.g. a
site or a machine - URL, IP) for an applicat ion-specific reason. On the other
hand , in a virtualized subst rate , multiple virt ual machines can be allocated in
the same physical host , sharing the real resources. VXDL enables the definition
of a maximum number of virtual machines that must be allocated in a physical
host , enabling users to interact directly with the allocation algorithm.

Virtual Network Topology Description: VXDL brings two original aspects
within the network's topology description : I) the joined specificat ion of network
elements and computing elements and II) the link-organization concept , which
permits a simple and abst ract description of complex structures. Links can define
connect ions between end hosts, between end hosts and groups, inside groups, be
tween groups and VXrouters , and between VXrouters. In VXDL grammar, the
definition of source - destinat ion pairs for each link is proposed. The same link
definition can be applied to different pairs , simplifying the specificat ion of com
plex infrastructures. For example, links used to interconnect all components of
an homogeneous group , as a cluster , can all be defined in a same link description.
Each link can be defined by attributes such as latency, bandwidth, and direction.
Lat ency and bandwidth can be defined by the maximum and minimum values.

Executing Distributed Applications on Virtualized Infrastructures 7

Virtual Timeline Description: Any VPXI can be permanent, semi-permanent,
or temporary. The VPXI are allocated for a defined lifetime in time slots. Time
slot duration is specificto the substrate-management framework and consequently
this parameter is configured by the manager of the environment. Often the VPXI
components are not used simultaneously or all along the VPXI lifetime. Thus, the
specification of an internal timeline for each VPXI can help optimizing the allo
cation , scheduling, and provisioning processes. Periods are delimited by temporal
marks. A period can start after the end of another period or after an event.

2.3 VPXI Embedding Problem

Using the VXDL language, users can specify the desirable configuration and
network composition of a VPXI. A VPXI request must then be interpreted,
and the corresponding virtual resources have to be reserved and provisioned on
available physical resources. This virtual-infrastructure allocation corresponds
to a classical graph embedding problem, where the graph describing the virtual
infrastructure must be mapped the physical substrate graph.

Virtual and physical graphs are of the form G(V,E) where vertices V are a set of
resources interconnected by a set of links (edges represented by E) . Each resource
or link can have a capacity represented by Cv and cp for virtual and physical com
ponents respectively. Capacities can be interpreted as configuration of bandwidth
or latency for links, and as memory size or CPU speed for resources/nodes. The
information about virtual resources allocation are represented in a map notation.
Each virtual component allocated in a physical one is represented as a line of map,
containing the reserved capacity (c,) and the utilization period (Lit) . This time
notation enables the representation of different time periods in the same VPXI,
where virtual resources and links can be used in disjoined time windows, in accor
dance with the timeline description proposed by VXDL.

This embedding problem is extremely challenging and has been proved to be
NP-hard. Embedding heuristics taking into account the substrate characteristics
to simplify the allocation have been proposed [12,13] . These proposals aim at
maximizing the resources usage or at minimizing the maximum link load. To
complement these works, we examine the virtual infrastructure description and
embedding problem from the application perspective.

3 Application-Mapping Principles

In our model, the application-mapping process is separated in three steps:

I) workflow generation: the workflow is generated using information extracted
from the application, such as benchmarks results, data input description, data
transfer in each module, and the number of nodes required to perform a satis
factory execution.

II) workflow translation into VXDL: taking into account the application's
requirements (RAM configuration, CPU speed, and storage size), users can de
velop a VXDL description, asking for the desirable configuration of the VPXI.

8 G. Koslovski et al.

At this point users can also declare that some components must be allocated in
a specific location as well as define the virt ual network topology specifying the
proximity (latency configurat ion) of the components and the needed bandwidth.

III) VPXI allocation: in this step VPXI management framework will allo
cate the virtual components respecting the configurat ion expressed by the user
(such as parametrizat ions and time periods organizat ion). In a second phase, the
software configurat ion (a S, programming and communication tools), extracted
directly from the application and described using VXDL, will be deployed within
the virtual machines that compose the VPXI.

3.1 Workflow Language

Complex applications able to exploit large scale distributed environments are
generally described with workflows. These workflows are interpreted by engines
th at convert the description of work in execut ion scripts.

Several workflow languages have been proposed in the literature. On grid
based infrastructures, Directed Acyclic Graph (DAG)-based languages such as
the MA-DAG language, part of the DIET middleware [3], have often been used.
They provide a explicit , stat ic graph of all computing tasks to be performed.
To ease definition of grid applications with a complex logic to be represented,
more abstract language have been introduced. For instance, Scufl was introduced
within the myGrid project- to present dat a flows enacted through the Taverna
workflow engine [10]. It is one of the first grid-oriented data flow languages that
focuses on the applicat ion data flow rather th an on the generated graph of tasks.
The GWENDIA language" considered in this paper is a dat a-flow oriented lan
guage th at aims at easing the description of the complex application data flows
from a user point of view while ensuring good applicat ion performances and grid
resources usage. An example of a graphic representation of workflow description
is given in figure 2. In this figure Floating and Reference are representing data
unit to be processed and CrestLines, CrestMatch, PFMatchICP, PFRegister,
Yasmina and Baladin are processing units. Floating and Reference represent
groups of data items to be processed: processing units will be invoked as many
time as needed to process all data items received. The user describing the appli
cat ion focus on the dat a processing logic rather than on the execution schedule.
The structural application workflow is t ransformed into an execut ion schedule
dynamically, while the workflow engine is being executed.

GWENDIA is represented in XML using the tags and syntax defined below:

Types: values flowing through the workflow are typed. Basic types are integer,
double , string and file .

Processors: a processor is a data production unit . A regular processor invokes
a service through a known interface. Special processors are workflow input (a
processor with no inbound connectivity, delivering a list of externally defined

2 myGrid UK e-Science project: \MI . mygrid .org
3 GWENDIA is defined in the context of the ANR-06-MDCA-009 GWENDIA project:

http ://gwendia .polytech .unice .fr

Executing Distributed Applications on Virtualized Infrastructures 9

Fig. 2. Bronze Standard workflow

data values), sink (a processor with no outbound connectivity, receiving some
workflowoutput) and constant (a processor delivering a single, constant value) .

Processor ports: processor input and output ports are named and declared. A
port may be an input «in> tag), an output «out> tag) or both an input /output
value « i nout > tag) . The input ports also define iteration strategies that cont rol
the number of invocation of the processor as a function of its inputs.

A simple example is given below:
< w o r k fi o w>

< i u t e rfac e>
<c o n s t a nt n arne="pa r arneter " t yp e=" i nt er g er " >

< v a l u e > 50</ v a lu e>
< /con s t.n n t>
< s o urc e n e rneee" r e a ls " t yp e=" doubl e " / >
< si n k nerneeev r e s u Lt a " t yp e="fil e " / >

< / i n terfa c e>
< p r oc e s sor s>

<p ro c e s s or na rn e=" d o ck i ng " t y p e=" w e b s e r v i c e " >
< w s d l ur 1=" http : / /lo e a l h o st / d o ckin g . ws d l " ope ra t i o n=" d o ck " / >
< i n n arne=" pararn" t yp e=" inte ge r " / >
< :i n n arne=" input " ty pe= " fi 1 e " />
< o u t ne rueee" r e sul t " t ype="doubl e " / >
< j t e re t i o ns t r a togy >

<l c r o s s >
<po r t narne=" p a r a m " / >
< p o r t n arne=" inp ut .. / >
< / el"o s s>

< / i t e ra t. Lo n s t s-ate g y >
< /ploO Ce S :5o r>
< p r o c e s s o r n e.rueee" s ta t i. s t i c e. I t es t" ty p e =" di et " >

< s e r v i c e path=" w e i g h t e d a v e r a g e " />
< i n nemeeev w e Lg h t s " t yp e::o:::::"d ouble " / >
< ~ n narne=" v a l u es " t yp e=" li st (i n t e g e r) " / >
< i n ne rneee" co e ff i cient " ty p e = " d o u b l e " />
< o u t n e m eee" res u It " t ype=" fi l e " />
<i t e rat io n st rat eg y >

< cr os s>
< po r t narne=" coeff i cie nt " / >
<mat.eh t a g=" pat i e nt " >

< p o r t n a rne="v a l ue s "/>
< p o r t nalTle=" w e i ght s " / >

10 G. Koslovski et al.

< /ma t c h>
</ c r oss>

</ Lt e r e t. i o ri s t r a t e lity >
</p r o c e s s o r >

</p r o c (} s ~o l: s>

</woi-kfl o w>

Data link: a data link is a simple connect ion between a processor output port
and a processor input port as exemplified below:
<lin k :3>

< li n k f'r-o m ee" r e e l e " t o =" s t a. t is t ica l t e s t : co e f f i c ie n t " / >
< li n k f'r-o rn ee v cl o c k Ln g r r e sult " t t"J= " s t a t i s t i c a l t es t : weig h ts " / >
< li n k f rOl'n = " s t a t i s t i c a l t e s t: r e sult " t o = " re s u l ts " / >

</ lin k s>

Workflow managers are associated with these workflow language and are in
charge of optimizing the execution of workflows. For example, MOTEUR [6]
is a data-intensive grid-interfaced workflow manager. MOTEUR can enact a
workflow represented in Scufl language or in GWENDIA language and submits
the workflow tasks to a grid infrastructure. To optimize the execution, it enables
three levels of parallelism: workflow parallelism, data parallelism and pipelining.

3.2 Workflow Translation into VXDL

A workflow description represents the input/output data, the processors (a data
processing module), and the relationship between an application's processors. In
our model, the workflow description will be translated in a VPXI description ,
specified in VXDL. Generally, to execute a complex application in a virtualized
infrastructure, one has to consider that a middleware has to supervise the exe
cution of the different tasks. In our example, the workflow engine (MOTEUR)
and a specific task scheduler are executed for every application on independent
computing resources. Input data and the intermediate results also require the
presence of a file server. Therefore the VXDL description of any VPXI execut
ing an application controled by the MOTEUR engine will contain a generic part
describing these 3 nodes.

The variable part of the VPXI description directly depends on the information
extracted from the workflow such as input data, the number of processors, and
the links between the processors. The computation time, the data volume and
the number of invocations of each module is another information that can be
extracted from the workflow. Given p the number of processors (modules) of an
application, the user can naively request n virtual computing resource and evenly
split the set of resources among the workflow processors. Each module therefore
has nip resources. This will of course be sub-optimal since the processors have
different execution times. A first variant of this naive strategy could take into
account extra information on the benchmarked execution time of each module.

4 Medical Application Example

Let us illustrate this VPXI description and embedding problem through a com
plex, real-scale medical-image analysis application known as bronze standard.

The bronze standard [7] technique tackles the difficult problem of validat
ing procedures for medical-image analysis. As there is usually no reference, or

Executing Distributed Applications on Virtu alized Infrastructures 11

gold standard, to validate the result of the computation in the field of medical
image processing, it is very difficult to objectively assess the results' quality. The
statistical analysis of images enables the quanti tative measurement of computa
tion errors. The bronze sta ndard technique statistica lly quantifies the maximal
error resulting from widely used imag e registrat ion algorithms. The larger the
sample image database and the number of registration algorithms to compare
with, the most accurate the method. This procedure is therefore very scalable
and it requires to compose a complex application workflow including different
registrat ion-computation services with data transfer inter-dependencies.

Bronze standard's workflow is enacted with the data-intensive grid-interfaced
MOTEUR workflow manager [6] designed to optimize t he execut ion of data
parallel flows. It submits the workflow tasks to the VPXI infrastructur e through
the DIET middleware [3], a scalable grid scheduler based on a hierarchy of agents
communicating through CORBA.

The est imated algorithm performance is valid for a typical dat abase image.
In the experiments reported below, we use a clinical dat abase of 32 pairs of
patient images to be registered by the different algorithms involved in the work
flow. For each run , the processing of the complete image dat abase results in the
generation of approximate ly 200 comput ing tasks. As illustr ated in figure 2, the
workflow of the application has a completely deterministic pattern. All proces
sors of this application have the same number of invocations. The execution time
and the data volume transferred of each processor have been mesured in initial
microbenchmarks reported in table 1.

Table 1. Execution time and processed data volume for each module of bronze
standard

Module ~Execution timelData volumeI
CrestLines 35s 32MB
CrestMatch 4s 36MB

PFMatchICP 14s 1O!l1B
PFRegister Is 0.5~lB

Yasmina 62s 22MB
Baladin 250s 25MB

Let us now consider a request for a VPXI composed of 35 nodes to execute
Bronze Standard's workflow. Three nodes will be dedicated to the generic part:
1 node for MOTEUR, 1 node for the middleware server and 1 node for the
database server. Th e 32 nodes left are distributed and allocated proportionally
to the execution time of the workflow processors : 3 nodes for CrestLines, 1 node
for Crest Match, 1 node for PFMatchIP, 1 node for PFRegister , 22 nodes for
Baladin , and 4 nodes for Yasmina. Then , for this same comput ing-resources
set, several variants of VPXI descriptions with different network topologies
can be expressed. We exemplify developing two different VPXI descriptions.

12 G. Koslovski et al.

Fig. 3. VPXI description of the bronze standard's workflow

The listing below presents a VXDL description of a virtual node (MOTEUR)
and a computing cluster (Baladin).

<vxd l : r e s o u r c e >
<vxdl : Id > M o t e u r < / v x d l: i d >
<vxd l r r -am Mem o ey '>

<vxdl: m i.n.>4< / v x dl : min>
<vxdl: mintJ nit >GB</vx d l : m i n U n it >

</ vxdl : ram l'vl elnory>
</v xd l: r e s o ur c e >
<v xdl : gr o u p >

<vx dl : i d >Clust er_B al ad in </vxd l : id>
< vxdl : fun cti o n>

<vxdJ : Id > c o m p u tl n g < / v x d l: id>
</vxd l: f u n c e ion>
<vxdl : s i z e >

< vx d l: m in> 22</vxdl : min>
</ vxdl: s i ze >
<vxdl : r e s o u r c e js

<vxdl: id> N o de _C l uste r_ B a la dl n </vxdl: id>
<vxd1 r r-e m M emoey'>

<vxdl : rnln>2</vxd l : 111.in>
<vxdl : rni nUnlt>GB</vx dl : mi nlJ nit>

<Iv X' d I : r e m M e m oryj»
</v xd l : r e sour c e>

</vxd] : g r o u p >

Figure 3 illustrates th e description of a VPXI using graphs. All components
and network links required to execute bronze standard's workflow are repre
sented. We developed two descriptions considering this scenario: in VPXI 1 the
network is composed by two links typ e, one with low latency intra cluster and
t he other one with a maximum latency of 10 ms to interconnect the clusters.
In VPXI 2 the network comprises three virtual links: one with a low intra
cluster latency (maximum latency of 0.200 ms), another one with a latency of
10 ms interconnecting the components except one asking for a maximum la
tency of 0.200 ms to interconnect CrestMatch (dar k blue) with the components

Executing Distributed Applications on Virtualized Infrastructures 13

VPXI 1 • Allocation I
Site 1 Site 2

Moleur CrestMatch dal ~ base Cresttmes

IB'·11 IB'·2 1 IE] rp 7 118 '0 4 1
Middleware PfRegister PfMalchlCP 18 '05 11G2J r·JI 18 r• 9 1- 1[;] ,08 1

1~'06 1
Yasmina Baladin

[EI r. 321."I~· 3~ r. J~ 1 ~ ...18 .0311

VPXI 2 - Allocat ion III
Site 1

VPXI 1 • Allocation II
Site 1

Site 2

Mlddleware

lB '031

Moleur

IBro1 1

CrestMalch
PfRegister

IB lf],.,,2

Mote ur CrestLines CreSlMatch PfReglsler

IE] roll IE) ,04 1 [B '02 1 18 ,· 91
Mlddleware [~ 'o sl Baladin

[B r03 1
- 18 r. lol..·10 r031118 r06 1

PFMatchlCP Yasmina

IE] '08 1 I~ 'o n j" · 10 '0351
data base

IE] r071

VPXI 2 • Allocation IV
Site 1 Site 2

Moteur CrestUnes

IB'·II 1[,. 4J r.4 1

Middleware 18 ro 5
1

IB '03 1 IG@ ro 6 I
PFMalchlCP

IE!] ,081

Yasmina

~0
ro21

,.,34 0
rp 22

G Virtua l node

G Physical node.

D-c=J Distributed resources

F ig . 4. Allocations of descriptions VPXI-l and VPXI-2

14 G. Koslovski et al.

PFMatchICP, Yasmina and Baladin (blue in the figure). Listing below shows
the VXDL description of this communication-intensive link.
<vx dl : l i n k >

<vx dl : id>Com m u nic a t l on Ln e e n e Lv e </vx dl : t d '>
<vxdl: di e e c t 10 n > bi </vxd l : d t r e c t i on >
< vxdl: latency>

<v xdl : m a x> O. 200<1 v x d l : max>
< v x d l : max U nit>m s</vxdl: m axUnit >

</v x.dl : t e e e n cy js
<vxd l : pai r>

< vxd l: so u rce > C l u s t e r _C r e s t M a t c h </vx d l : s our ce>
< vxd l : d est ination> C l us te r_ B a la d i n</vxd J : d e s t t n a t t o n c

</vxd l : pai r>
<vxdl: pai r>

<vxdl : s o u rce > C l u s t e r _C r e s t M a t c h </ vxd l: source>
<vxdJ : d c e e t n e t f o n > C l u e ter_ Y a e m l na</vxdJ: d e s t in a t i o n >

</vxd l : pair>
<vxd l : pa ir>

<vxd l : s o u rc e > C l u s t e r _ C r e s t M a t c h </vxd l: sour ce>
<vxdl : d c e tin a t 10 n > C lue te r _P F M a tc h I C P </vxd 1 : de g t i n a t i o n >

</vx d l: p ai l' >
<vx d l : p ai r>

< vxdl : s o u r c e > D a t a b a s c < / v x d l : s o u rce >
<v xdl : d estin at i on>C l u t:lter_ Cre!:l t M a tc h </vxd J: d e stina t i on>

</ vxdl : p a i l' >
</vx d l : link>

Let us now illustrate how each VPXI description can be embedded in a physical
substrate. We propose two different solutions for both VPXI, which correspond to
four different physical allocat ions as represented in figure 4. In this example, Site
1 and Site 2 represent two geographically-dist ributed-resources sets.

In VPXI 1 - Allocation I , intr a-cluster link specification enables the al
location of loosely connected resources. In this embedding solution, 1 virt ual
machine per each physical node is allocat ed.

In VPXI 1 - Allocation II each physical node in clusters CrestMatch,
PFRegister , Yasmina, and Baladin are allocated 2 virt ual machines.

The VPXI 2 - Allocation III respects the required interconnection allocat
ing corresponding resources in the same physical set of resources (such as a site
in a grid). This embedding solution explores the allocat ion of 1 virt ual machine
per physical node.

VPXI 2 - Allocation IV explores the same physical components as Alloca
tion III but allocates 2 virtual machines per physical node in the CrestMatch,
PFRegister , Yasmina, and Baladin clusters.

5 Experiments in Grid'5000

To have a better insight on the influence of VPXI description, we deploy different
virtual infrastructures for execut ing the proposed workflow in the Grid '5000
physical subst rate managed and operated by the HIPerNET framework.

5.1 HIPerNet Framework and Grid'5000 Substrate

The HIPerN'ET software" [11] aims to provide a framework to build and manage
private, dynamic, predictable and large-scale virtual computing environments,
that high-end challenging applications, like biomedical or bioinformatic applica
t ions, can use with traditional APl s: standard POSIX calls, sockets and Message

4 http :/ /www.ens-lyon.fr/LP / RESO/software/ HIPerNET

Executing Distributed Applicati ons on Virtualized Infrastructures 15

Passing (MPI, OpenMP) communicat ion libraries. With this framwork, a user
preempt and interconnect virtually, for a given t imeframe, a pool of virtual re
sources from a dist ributed physical subst rate in order to execute his application.
The originality of HIPerNet is to combine system and networking virt ualiza
t ion technologies with crypto -based security, bandwidth sharing and advance
reservation mechanisms.

The HIPerNet subst rate is transparent to all types of upper layers: upper
layer proto cols (e.g. TCP, UDP), APIs (e.g. sockets), middleware (e.g. Globus,
Diet), applicat ions, services and users. Hence, the HIPerNet model maintains
backward compatibility with existing APIs, Middlewares and Applications which
were designed for UNIX and TCP l IP APIs. Therefore, users do not need to learn
new tools, developers do not need to port applicat ions, legacy user authentication
can still be used to enroll a user into a VPXI.

The HIPerNet framework aims at partitionning a distr ibuted physical infras
tructure (computers, disks, networks) into dedicated virtual private computing
environment dynamically composed. When a new machine joins the physical
resource set, HIPerNet prepares its operating system to enable several virt ual
machines (VMs) to be instantiated dynamically when required. This set of po
tentia l virtual machines is called an HIPerSpace and it is represented in the
HIPerSpace Database. The HIPerSpace is the only entity that see the physical
ent ities. A resource, volunteer to join the resource pool, is automatically init i
ated and registered in the HIPerSpace database. The discovery of all the devices
of the physical node is also automatic. An image of the specific HIPerNet op
erating system is deployed on it. In our current HIPerNet implementation, the
operating system image contains basically the Xen Hypervisor and its domain of
administration called domain 0 (Dom 0). The HIPerSpace registrar (Operational
HIPerVisor) collects and stores persistently data and manages accounts (e.g., the
authent ication database). It is therefore hosted by a physical machine outside
of the HIPerSpace itself. For the sake of robustness and scalability, HIPerSpace
registr ar can be replicated or even distributed.

We run the application within several virtual infrastructures created and man
aged by our HIPerl\et software within the Grid '5000 testb ed[4J. Grid '5000 en
ables user to request, reconfigure and access physical machines belonging to
9 sites distributed in France. In our experiment , we reserve several Grid'5000
nodes to compose a pool of physical resources that we initialize to form an
HIPerSpace. To instanciate an HIPerSpace, specific tools provided by the hosted
Grid are used. This is the only part aware of the physical infrast ructure of the
HIPerNet Software. All the other parts are independant of the physical resources
because they use them indirectly through the services provided by HIPerN'et. In
Grid '5000, the HIPerSpace appears like a set of ordinary jobs scheduled by OAR
with the use of a specific operating system image deployed by kadeploy.

5.2 Med ica l Imaging Application Deployment on the Testbed

For testing VPXls, a system image containing the operating system based on
a standard Linux distribut ion Debian Etch with a kernel version 2.6.18-8 for

16 G. Koslovski et al.

AMD64, t he domain-specific image processing services and the middleware com
ponents (MOTEUR and DIET) was created. The experiments on the VPXIs
described in the section 4 were performed. In each experiment, we repeated
the application 10 t imes to measure the average and standard deviation of the
application makespan, the data t ransfer and task execution t ime. The physical
infrastructure is reserved on the Grid '5000 clusters: capricorne (Lyon), bordemer
(Bordeaux) and azur (Sophia) which CPUs are 2.0 GHz dual-cores Opterons.
The distance between clusters is 500km and they are connected th rough lOGbps
links. Each VPXI is composed of 35 nodes divided in generic and variable part :
3 nodes are dedicated to generic part (MOTEUR, DIET , file server) using 1
CPU per node and the remaining 32 nodes of the variable part are allocated
dependently on the VPXIs (VPXI 1 - Allocation I and VPXI 2 - Allocation III
used 1 CPU per node while VPXl l - Allocation II and VPXI 2 - Allocation IV
used 1 CPU core per node).

Coallocating resources on one grid site: the applicat ion's makespan on the
VPXI 2 - Allocation III and VPXI 2 - Allocation IV is llmin 44s (±49s) and
12min 3s (±5 0s) respectively. This corresponds to a +3.8% makespan increase,
due to the execution overhead when there are two virtual machines collocated
on the same physical resource. Indeed, we present in the table 2 t he average
execution t ime of application services on the VPXI 2 - Allocations III and IV.
We can observe that the average execution overhead is 5.17% (10.53% in the
worst case and 1.28% in the best case).

Table 2. Executi on time on VP XI 2 - Allocations III and IV and 4

I Services II Allocat ion III IAllocati on IV Ivariationl

CrestLines 34.12 ± 0.34 36.84 ± 5.78 + 7.97%
CrestMatch 3.61 ± 0.48 3.99 ± 0.63 + 10.53%
PF~latchICF 11.93 ± 2.76 12.75 ± 5.35 +6.87%
PFRegist er 0.78 ± 0.18 0.79 ± 0.18 + 1.28%

Yasmina 59.72 ± 14.08 61.53 ± 13.98 +3.03%
Baladin 244.68 ± 16.68 247.99 ± 19.51 + 1.35%

Resources distributed over 2 sites: when porting the applicat ion from a
local infrast ructure to a large scale infrastructure, the data tr ansfer increases.
Table 3 presents the dat a t ransfer t ime (s) of the application services on VPXI 2
- Allocation IV (local) and VPXll - Allocation II (distributed over 2 sites). The
measured overhead is 150% in the worst case. Conversely, some local transfers
may be slight ly reduced. In the case of our application however, this overhead
has little impact on the applicat ion makespan since it is compensated for by the
parallel dat a t ransfer and computat ions. Indeed, the makespan is 12min (±12 s)
and 12min l l s (±2 0s) on VPXI 1 - Allocation I and VPXI 1 - Allocation II
respectively, very similar to the performance of VPXI 2 - Allocation IV.

Resources distributed over 3 sit es: furth er dist ributing comput ation al
resources causes an additional increase of the data-transfer overheads. An

Executing Distributed Applications on Virtualized Infrastructures 17

CrestLines 2 ± 0.45 3.01 ± 1.6 +50.5%
CrestMatch 1.99 ± 0.31 1.83 ± 0.36 -8.04%

PFMatchICP 1.3 ± 0.4 3.25 ± 0.13 + 150%
PFRegister 0.51 ± 0.23 0.43 ± 0.09 -15.69%

Yasmina 1.19 ± 0.27 1.16 ± 0.21 -2.52%
Baladin 1.17 ± 0.38 1.81 ± 1.03 +54.7%

Table 3. Data transfer time on the local VPXI 2 - Allocation IV and large scale VPXI
1 - Allocation II infrastructure

Services ~Allo cation IVIAllocation IIIvariationI

addit ional experiment with VPXll - Allocation II t he generic part of which is
located in Lyon while th e variable part is randoml y distributed in Lyon, Bor
deaux and Sophia leads to a makespan of 12min 13s (± 30s) with a dat a-transfer
overhead of 176% in th e worst case.

6 Related Work

In thi s section, we briefly describe related works which explore a virtual- infras
tructure composition on distributed resources, as well as th e mapping process.

In [8] the aut hors propose the use of virtual grids to simplify application
scheduling. Their descriptive language, vgDL, enables users to specify an initial
description of the desirable resources, resulting in a pre-selected virtual grid cor
responding to a simple vgDL description. vgDL proposes three aggregat ion types
to specify the interconnect ion network: LooseBag, TightB ag and Cluster. The
approach proposed in VXDL is more comprehensive and allows the definition of
the infrast ruct ure's shape through the description and configuration of virtual
links.

The approach of cont rolled virtual network infrastruct ures, running in par
allel over a shared physical network is an emerging idea offering a variety of
new features for the network . Cabo [5] proposes to exploit virtual networks for
Internet Service Providers, distinguishing th em from the physical infrastructure
providers, and giving th em end-to-end cont rol. HIPer NET shares the same vision
but focuses more on distr ibut ed comput ing application and proposes a language
to express the infrast ructure requirements in capacity, time, and space.

In [2], the authors propose VINI, a virt ual network infrast ructure that allows
severa l virtual networks to share a single physical infrastructure, in a similar way
to HIPerNET . VINI makes th e network t ransparent to the user, representing
each component of the network. This being one of our main interests, HIPer
NET provides a language, VXDL, to specify the top ology of those components.
The GENI proj ect [1] aims to build a shared infrastructure for hosting multiple
types of network experiments . VXDL can help in the description of slices and
HIPerNET is an orchest ration framework that suits GENI's requirements .

18 G. Koslovski et at.

7 Conclusion and Perspectives

This paper proposed the VXDL language to specify virtual infrastructures and
the HIPerNET framework to deploy and execute them . It illustrated the usage
of these combined tools by a real application. In particular it developed the
process of translating an applicaton's workflow into a VXDL description of a
virtual private execution-infrastructure. This paper detailed the description of
several virtual infrastructures for executing the same medical applications that
require a high quality of service and a scalable infrastructure. Experimental
results of the deployment and execution of this application in different virtual
infrastructures using the HIPerNET framework within the Grid'5000 substrate
assess the pertinence of the VXDL language and of the HIPerNET framework.
Based on these promising results, our future works will explore an approach to
automate the translation of the workflow in a VXDL description , with the aim of
capitalising on the expertise of application and workflow developers to ease the
embedding process while improving end-user satisfaction as wellas infrastructure
usage.

Acknowledgments

This work has been funded by the ANR CIS HIPCAL grant (contract ANR06
CIS-005), the French ministry of Education and Research, INRIA, and CNRS,
via ACI GRID's Grid '5000 project and Aladdin ADT.

References

1. Geni design principles . Computer 39(9), 102-105 (2006)
2. Bavier, A., Feamster, N., Huang , M., Peterson, L., Rexford , J.: VINI Veritas : Real

istic and Controlled Network Experimentation. ACM SIGCOMM Computer Com
munication Review (CCR) 36(4), 3-14 (2006)

3. Caron, E., Desprez, F .: DIET: A Scalable Toolbox to Build Network Enabled
Servers on the Grid . Int . Journal of High Performance Computing Applica
tions 20(3), 335-352 (2006)

4. Cappello , F ., Primet , P., et al.: Grid 5000: A large scale and highly reconfigurable
grid experimental testbed . In: GRID 2005: Proceedings of the 6th IEEE/ ACM
International Workshop on Grid Computing, pp . 99-106 . IEEE Computer Society,
Los Alamitos (2005)

5. Feamster, N., Gao, L. , Rexford , J .: How to lease the internet in your spare time.
SIGCOMM Comput. Commun . Rev. 37(1), 61-64 (2007)

6. Glatard, T ., Montagnat, J ., Lingrand, D., Pennec, X.: Flexible and efficient work
flow deployement of data-intensive applications on grids with MOTEUR. Int . Jour
nal of High Performance Computing and Applications (UHPCA) 22(3), 347-360
(2008)

7. Glatard , T ., Pennec , X., Montagnat, J .: Performance evaluation of grid-enabled reg
istration algorithms using bronze-standards. In : Larsen, R., Nielsen, M., Sporring,
J . (eds.) MICCAI 2006. LKCS, vol. 4191, pp . 152-160 . Springer, Heidelberg (2006)

Executing Distributed Applications on Virtualized Infrastructures 19

8. Huang, R., Casanova, H., Chien, A.A.: Using virtual grids to simplify application
scheduling. In : 20th International Parallel and Distributed Processing Symposium ,
IPDPS 2006, April 2006, p. 10 (2006)

9. Koslovski, G., Primet, P.V.-B., Charao, A.S.: VXDL: Virtual Resources and Inter
connection Networks Description Language. In: GridNets 2008 (October 2008)

10. Oinn , T ., Li, P., Kell, D.B., Goble, C., Gooderis, A., Greenwood, M., Hull, D.,
Stevens, R., Turi, D., Zhao, J .: Taverna/myGrid: Aligning a WorkflowSystem with
the Life Sciences Community, ch. 19, pp. 300-319. Springer , Heidelberg (2007)

11. Primet , P.V.-B., Gelas, J.-P., Mornard, 0 ., Koslovski, G., Roca, V., Giraud, L.,
Montagnat, J., Huu, T.T.: A scalable security model for enabling dynamic virtual
private execution infrastructures on the internet. In: IEEE International Confer
ence on Cluster Computing and the Grid CCGrid 2009, Shanghai (May 2009)

12. Yu, M., Yi, Y., Rexford, J. , Chiang , M.: Rethinking virtual network embedding :
substrate support for path splitting and migration . SIGCOMM Comput. Commun.
Rev. 38(2), 17-29 (2008)

13. Zhu, Y., Ammar , M.: Algorithms for assigning substrate network resources to vir
tual network components. In: INFOCOM 2006. 25th IEEE International Confer
ence on Computer Communications. Proceedings, April 2006, pp . 1-12 (2006)

HighPerformance Parallel Computing with
Clouds and Cloud Technologies

Jaliya Ekanayake and Geoffrey Fox

School of Informatics andComputing,
Indiana University, Bloomington, IN47405, USA

{jekanaya ,gcf}@indiana.edu

Abstract. Infrastructure services (Infrastructure-as-a-service), provided bycloud
vendors, allow anyuserto provision a large number of compute instances fairly
easily. Whether leased from public clouds or allocated from private clouds, uti
lizing these virtual resources to perform data/compute intensive analyses requires
employing different parallel runtimes to implement such applications. Among
many parallelizable problems, most "pleasingly parallel" applications canbe per
formed using MapReduee technologies such as Hadoop, CGL-MapReduce, and
Dryad, in a fairly easy manner. However, many scientific applications, which
have complex communication patterns, still require low latency communication
mechanisms andrichset of communication constructs offered by runtimes such
as MPI. In this paper, we first discuss large scale data analysis usingdifferent
MapReduce implementations and then, we present a performance analysis of
high performance parallel applications on virtualized resources.

Keywords: Cloud, Virtualization, MapReduce, Dryad, Parallel Computing.

1 Introduction

The introduction of commercial cloud infrastructure services such as Amazon EC2/S3
[1-2] and GoGrid[3] allow users to provision compute clusters fairly easily and
quickly by paying a monetary value only for the duration of the usage of resources.
The provisioning of resources happens in minutes as opposed to the hours and days
required in the case of traditional queue-based job scheduling systems. In addition,
the use of such virtualized resources allows the user to completely customize the
Virtual Machine (VM) images and use them with root/administrative privileges,
which is another feature that is hard to achieve with traditional infrastructures.

The availability of open source cloud infrastructure software such as Nimbus [4]
and Eucalyptus [5], and the open source virtualization software stacks such as Xen
Hypervisor[6], allows organizations to build private clouds to improve the resource
utilization of the available computation facilities. The possibility of dynamically pro
visioning additional resources by leasing from commercial cloud infrastructures
makes the use of private clouds more promising.

With all the above promising features of cloud, we can assume that the accessibili
ty to computation power is no longer a barrier for the users who need to perform large

D.R. Avreskyet al. (Eds.): Cloudcomp2009. LNICST34, pp. 20-38, 2010.
© Institutefor ComputerSciences,Social-Informatics and Telecommunications Engineering2010

High Performance Parallel Computing with Clouds and Cloud Technologies 21

scale data/compute intensive applications. However, to perform such computations,
two major pre-conditions need to be satisfied: (i) the application should be paralleliz
able to utilize the available resources; and (ii) there should be an appropriate parallel
runtime support to implement it.

We have applied several cloud technologies such as Hadoop[7], Dryad and Dryad
LINQ[8,9], and CGL-MapReduce[lO], to various scientific applications wiz: (i)
Cap3[II] data analysis; (ii) High Energy Physics(HEP) data analysis ; (iv) Kmeans
clustering[12]; and, (v) Matrix Multiplication. The streaming based MapReduce [13]
runtime - CGL-MapReduce- developed by us extends the MapReduce model to itera
tive MapReduce domain as well. Our experience suggests that although most "plea
singly parallel" applications can be performed using cloud technologies such as
Hadoop, CGL-MapReduce, and Dryad, in a fairly easy manner, scientific applica
tions, which require complex communication patterns, still require more efficient
runtime support such as MPI[14].

In order to understand the performance implications of virtualized resources on
MPI applications, we performed an extensive analysis using Eucalyptus based private
cloud infrastructure. The use of a private cloud gives us complete control over both
VMs and bare-metal nodes, a feature that is impossible to achieve in commercial
cloud infrastructures. It also assures a fixed network topology and bandwidth with the
nodes deployed in the same geographical location , improving the reliability of our
results. For this analysis, we used several MPI applications with different communica
tion/computation characteristics, namely Matrix Multiplication, Kmeans Clustering ,
and Concurrent Wave Equation Solver and performed them on several VM configura
tions. Instead of measuring individual characteristics such as bandwidth and latency
using micro benchmarks we used real applications to understand the effect of virtua
lized resources for such applications , which makes our result s unique.

In the sections that follow, we first present the work related to our research fol
lowed by a brief introduction to the data analysis applications we used. Section 4
presents the results of our evaluations on cloud technologies and a discussion . In
section 5, we discuss an approach with which to evaluate the performance implica
tions of using virtualized resources for high performance parallel computing . Section
6 presents the results of this evaluation along with a discussion of the results . In the
final section we give our conclusions and we discuss implications for future work.

2 Related Work

Traditionally, most parallel applications achieve fine grained parallelism using mes
sage passing infrastructures such as PVM [15] and MPI. Applications achieve coarse
grained parallelism using workflow frameworks such as Kepler [16] and Taverna
[17], where the individual tasks could themselves be parallel applications written in
MPI. Software systems such as Falkon [18], SWARM [19], and DAGMan [20] can be
used to schedule applications which comprise of a collection of a large number of
individual sub tasks.

Once these applications are developed, in the traditional approach, they are ex
ecuted on compute clusters, super computers, or Grid infrastructures [21] where the
focus on allocating resources is heavily biased by the availability of computational

22 J. Ekanayake and G. Fox

power. The application and the data both need to be moved to the available computa
tional power in order for them to be executed. Although these infrastructures are high
ly efficient in performing compute intensive parallel applications, when the volumes
of data accessed by an application increases, the overall efficiency decreases due to
the inevitable data movement.

Cloud technologies such as Google MapReduce, Google File System (GFS) [22],
Hadoop and Hadoop Distributed File System (HDFS) [7], Microsoft Dryad, and
CGL-MapReduce adopt a more data-centered approach to parallel runtimes. In these
frameworks, the data is staged in data/compute nodes of clusters or large-scale data
centers, such as in the case of Google. The computations move to the data in order to
perform data processing. Distributed file systems such as GFS and HDFS allow
Google MapReduce and Hadoop to access data via distributed storage systems built
on heterogeneous compute nodes, while Dryad and CGL-MapReduce support reading
data from local disks. The simplicity in the programming model enables better sup
port for quality of services such as fault tolerance and monitoring. Table I highlights
the features of three cloud technologies that we used.

Table 1. Comparison of features supported by different cloud technologies

Feature Hadoop Dryad& DryadLINQ CGL-MapReduce
Programming MapReduce DAGbasedexecution MapReduce with
Model flows Combine phase
DataHandling HDFS Shareddirectories/ Sharedfile system/

Localdisks Localdisks
Intermediate Data HDFS/ Files/I'Cl' pipes/Shared ContentDistribution
Communication Point-to-point via memory FIFO Network

HITP (NaradaBrokering[23])
Scheduling Data locality/ Data locality/ Network Data locality

Rackaware topology based
run timegraph
optimizations

FailureHandling Persistence via Re-execution of vertices Currently not imple-
HDFS mented
Re-execution of (Re-executing map
map and reduce tasks, redundant reduce
tasks tasks)

Monitoring Monitoring support Monitoring supportfor Programming interface
ofHDFS, execution graphs to monitorthe progress
Monitoring of jobs
MapReduce
computations

Language Implemented using Programmable via C# Implemented usingJava
Support Java DryadLINQ provides Other languages are

Other languages are LINQprogramming supported viaJava
supported via API for Dryad wrappers
HadoopStreaming

High Performance Parallel Computing with Clouds and Cloud Technologies 23

Y. Gu, et al., present Sphere [24] architecture, a framework which can be used to
execute user-defined functions on data stored in a storage framework named
Sector, in parallel. Sphere can also perform MapReduce style programs and the au
thors compare the performance with Hadoop for tera-sort application. Sphere stores
intermediate data on files, and hence is susceptible to higher overheads for iterative
applications.

All-Paris [25] is an abstraction that can be used to solve a common problem of
comparing all the elements in a data set with all the elements in another data set by
applying a given function. This problem can be implemented using typical MapRe
duce frameworks such as Hadoop, however for large data sets, the implementation
will not be efficient, because all map tasks need to access all the elements of one of
the data sets. We can develop an efficient iterative MapReduce implementation using
CGL-MapReduce to solve this problem. The algorithm is similar to the matrix multip
licationalgorithmwe will explain in section3.

Lamia Youseff, et al., presents an evaluationon the performance impact of Xen on
MPI [26]. According to their evaluations, the Xen does not imposeconsiderableover
heads for HPC applications. However, our results indicate that the applications that
are more sensitive to latencies (smaller messages, lower communication to computa
tion ratios) experience higher overheads under virtualized resources, and this over
head increases as more and more VMs are deployed per hardware node. From their
evaluations it is not clear how many VMs they deployed on the hardware nodes, or
how many MPI processes were used in each VM. According to our results, these
factors cause significant changes in results. Running 1-VM per hardware node pro
duces a VM instance with a similar number of CPU cores as in a bare-metal node.
However, our results indicate that, even in this approach, if the parallel processes
inside the node communicate via the network, the virtualization may produce higher
overheads under the current VM architectures.

C. Evangelinos and C. Hill discuss [27] the details of their analysis on the perfor
mance of HPC benchmarks on EC2 cloud infrastructure. One of the key observations
noted in their paper is that both the OpenMPIand the MPICH2-nemsisshow extreme
ly large latencies, while the LAM MPI, the GridMPI, and the MPICH2-scok show
smaller smoother latencies. However, they did not explain the reason for this behavior
in the paper. We also observed similar characteristics and a detailed explanation of
this behaviorand related issues are given in section 5.

Edward Walker presents benchmark results of performing HPC applications using
"high CPU extra large" instances providedby EC2 and on a similar set of local hard
ware nodes [28]. The local nodes are connected using infiniband switches while
AmazonEC2 networktechnology is unknown. The results indicate about40%-1000%
performance degradation on EC2 resources compared to the local cluster. Since the
differences in operating systems and the compiler versions between VMs and
bare-metal nodes may cause variations in results, for our analysis we used a cloud
infrastructure that we have complete control. In addition we used exactly similar
software environments in both VMs and bare-metal nodes. In our results, we noticed
that applications that are more susceptible to latenciesexperiencehigher performance
degradation (around 40%) under virtualized resources. The bandwidth does not seem
to be a consideration in private cloud infrastructures.

24 1.Ekanayake and G. Fox

AdaGavrilvska, et aI.,discuss several improvements over the current virtualization
architectures to support HPC applications such as HPC hypervisors (sidecore) and
self-virtualized VO devices [29] . We notice the importance of such improvements
and research. In our experimental results, we used hardware nodes with 8 cores and
we deployed and testedup to 8VMs per node in thesesystems. Our results show that
the virtualization overhead increases with the number of VMs deployed on a hard
ware node. These characteristics will have a larger impact on systems having more
CPU cores per node. A node with 32 cores running 32 VM instances may produce
verylargeoverheads under thecurrentVMarchitectures.

3 Data Analysis Applications

The applications we implemented using cloud technologies can be categorized into
three classes, depending on the communication topologies wiz: (i) Map-only; (ii)
MapReduce; and (iii) Iterative/Complex. In our previous papers [10,30], we have
presented details of MapReduce style applications and a Kmeans clustering applica
tion that we developed using cloud technologies, and the challenges we faced in
developing these applications. Therefore, in this paper, we simply highlight the cha
racteristics of theseapplications in table2 and present the results. The two newappli
cations that we developed, Cap3 and matrix multiplication, are explained in more
detail in this section.

Table 2. Map-Onlyand MapReduce styleapplications

Feature
Program/data
flow

More
Examples

Ma -onlv

~
!lnpui'Oata·F'iio·s...... :

-:: !(Gene sequancesj]
:.. •.••••••••••••••••••••__ ••••••..••••.•. 1

Im:po I.·1m:pO I rCap3j);og;iim":
: •••••••••H ••••••••••••••••.••••••• :=r···..6~t·p~t·fii~·~· _..~- ,

Cap3 Analysi application
implemented as a map-only
operation. Each maptask
processed a single inputdata file
and produces a set of output data
files.
Convening a collection of
document to different formats.
processing a collection of
medical images. and .
Brute force searches in
cryptography

reduce() !pertormss·iji·;;.rg·;;··"··l
'--- ---'-'- l~J:l~fl).~~.~..~~.~I~:~fl)~~ .j

HEPdata analysisapplication
implemented using MapReduce
programming model (ROOT is an object
oriented data analysis framework).

Histogramming operations.
distributed search. and di uributcd sorting.

HighPerformance Parallel Computing with Clouds andCloudTechnologies 25

3.1 Cap3

Cap3 is a sequence assembly program that operates on a collection of gene sequence
files which produce several output files. In parallel implementations, the input files
are processed concurrently and the outputs are saved in a predefined location. For our
analysis, we have implemented this application using Hadoop, CGL-MapReduce and
DryadLiNQ.

3.2 Iterative/Complex Style Applications

Parallel applications implemented using message passing runtimes can utilize various
communication constructs to build diverse communication topologies . For example, a
matrix multiplication application that implements Cannon's Algorithm [31] assumes
parallel processes to be in a rectangular grid. Each parallel process in the gird com
municates with its left and top neighbors as shown in Fig. l(left). The current cloud
runtimes, which are based on data flow models such as MapReduce and Dryad, do not
support this behavior, where the peer nodes communicate with each other. Therefore,
implementing the above type of parallel applications using MapReduce or Dryad
models requires adopting different algorithms .

~Bj .. ~
.----,,-+-------. I

1~iPO I· ·1 m,po I
ClIO 0

\ I
I reduceO I

I [EDCi

Ai
c=J

Fig. 1. Communication topology of matrix multiplication applications implemented using
Cannon'salgorithm (left)and MapReduce programming model (right)

We have implemented matrix multiplication applications using Hadoop and CGL
MapReduce by adopting a row/column decomposition approach to split the matrices.
To clarify our algorithm, let's consider an example where two input matrices A and B
produce matrix C, as the result of the multiplication process. We split the matrix B
into a set of column blocks and the matrix A into a set of row blocks. In each itera
tion, all the map tasks consume two inputs: (i) a column block of matrix B, and (ii) a
row block of matrix A; collectively, they produce a row block of the resultant matrix
C. The column block associated with a particular map task is fixed throughout the
computation while the row blocks are changed in each iteration. However , in Ha
doop's programming model (typical MapReduce model), there is no way to specify
this behavior and hence, it loads both the column block and the row block in each
iteration of the computation. CGL-MapReduce supports the notion of long running
map/reduce tasks where these tasks are allowed to retain static data in memory across

26 1.Ekanayake and G. Fox

invocations, yielding better performance for iterative MapReduce computations. The
communication pattern of this application is shown in Fig. I(right).

4 Evaluations and Analysis

For our evaluations, we used two different compute clusters (details are shown in
Table 3). DryadLINQ applications are run on the cluster Ref A while Hadoop, CGL
MapReduce, and MPI applications are run on the cluster Ref B. We measured the
performance (average running time with varying input sizes) of these applications and
then we calculated the overhead introduced by different parallel runtimes using the
following formula , in which P denotes the number of parallel processes (map tasks)
used and T denotes time as a function of the number of parallel processes used. T(1)
is the time it takes when the task is executed using a single process. T(P) denotes the
time when an application is executed using P number of parallel processes (For the
results in Fig. 2 to Fig. 5, we used 64 CPU cores and hence the P=64) . The results of
these analyses are shown in Fig. 2 -5 . Most applications have running times in mi
nutes range and we noticed that the fluctuations in running time are less than 5% for
most cloud runtimes. The average times shown in figures are calculated using the
results of 5 repeated runs of the application s. We used Hadoop release 0.20, the aca
demic release of DryadLINQ (Note: The academic release of Dryad only exposes the
DryadLINQ API for programmers. Therefore, all our implementations are written
using DryadLINQ although it uses Dryad as the underlying runtime).

Overhead = [P *T(P) -T(1)]fT(1).

Table 3. Different computation clusters used for the analyses

Cluster # Nodes used CPU Memory Operating System
Ref (fotal CPU cores
Ref A 8/64 2x Intel(R) Xeon(R) 16GB Windows Server 2008

CPU L5420 - 64 bit HPC Edition
2.50GHz (Service Pack I)

RefB 8/64 2 x Intel(R) Xeon(R) 32GB Red Hat Enterprise
CPU L5420 Linux Server release
2.50GHz 5.3 - 64 bit

(1)

All three cloud runtimes work competitively well for the CAP3 application. In the
Hadoop implementation of HEP data analysis, we kept the input data in a high per
formance parallel file system rather than in the HDFS because the analysis scripts
written in ROOT could not access data from HDFS. This causes Hadoop 's map tasks
to access data remotely resulting lower performance compared to DryadLINQ and
CGL-MapReduce implementations, which access input files from local disks. Both
DryadLINQ and Hadoop show higher overheads for Kmeans clustering application ,

HighPerformance Parallel Computing withCloudsand CloudTechnologies 27

soo

en 400"c0
U
ell
~ 300
ell
E,.,
ell

'" 200l!
ell
>-c

CGL~~i,m ==F »>__/~/~'~
2s-::

" .

/;~/
100 ·······

149k59k 89k 119k

Number of genesequences

O L-----'-----~----'---------'

29k

Fig. 2. Performance of the Cap3 application

300

250

en
"c 2008
ell
~
ell 150E,.,
ell

'"l! 100
ell

~

50

CGL-MapReduce --a-
Hadoop ••..& .

DryadLlNQ/b .

.

.6 - .A...... . . •.. •- .&r •••••••••

OL---- - - - - -----------'

Amount of HEPdatain GBs

Fig. 3. Performance of HEPdata analysis applications

and Hadoop shows higher overheads for the Matrix multiplication application. CGL
MapReduce shows a close performance to the MPI for large data sets in the case of
Kmeans clustering and matrix multiplication applications, highlighting the benefits of
supporting iterative computations and the faster data communication mechanism in
the CGL-MapReduce.

From these results, it is clearly evident that the cloud runtime s perform competi
tively well for both the Map-only and the MapReduce style applications. However, for
iterative and complex classes of applications, cloud runtime s show considerably high
overheads compared to the MPI versions of the same applications, implying that, for
these types of applications, we still need to use high performance parallel runtimes or
use alternative approaches. (Note: The negative overheads observed in the matrix
multiplication application are due to the better utilization of a cache by the parallel
application than the single process version). These observat ions lead us to the next
phase of our research .

28 J. Ekanayake and G. Fox

le+007

_ • •Q ...• •_ •• ..• '.'"

..A······

······································IJs·· ···

500

.,
"D 400c

~
~

300"~
"'" 200l!!
"~

100

0

CGL-MapReduce~
Hadoop ._••& ..

DryadLlNQ/>, ••••

MPI ··· v ·· .

_..•.•......•...•........•....•-e......•...-~---..•......•..••.::::::::::.,,*:::::::. .

le+006
Number of 20 datapoints (logscale)

Fig. 4. Performance of different implementations of Kmeans Clustering application (Note: X
axis is in logscale)

to r---,..-,---,-----.,---,,-----r------,
MPI····v "

CGL-MR . .. {;...
Hadoop~

5

614451203072 4096
Dimension of a matrix

2048

2

1

o~-~--_----.:::~==~====t
-1 L-__-'--__----"== -.L======J
1024

Fig. 5. Overhead induced bydifferent parallel programming runtimes forthematrix multiplica
tionapplication (8nodes are used)

5 Performance of MPI on Clouds

After the previous observations. we analyzed the performance implications of cloud
for parallel applications implemented using MPI. Specifically. we were trying to find
the overhead of virtualized resources, and understand how applications with different
communication-to-computation (C/C) ratios perform on cloud resources. We also
evaluated different CPU core assignment strategies for VMs in order to understand
the performanceof VMs on multi-corenodes.

Commercial cloud infrastructures do not allow users to access the bare hardware
nodes, in which the VMs are deployed, a must-have requirement for our analysis.
Therefore, we used a Eucalyptus-based cloud infrastructure deployed at our university
for this analysis. With this cloud infrastructure, we have complete access to both
virtual machine instances and the underlying bare-metal nodes, as well as the help of

HighPerformance ParalIel Computing withClouds andCloud Technologies 29

the administrators; as a result, we could deploy different VM configurations allocat
ing different CPU cores to each VM. Therefore , we selected the above cloud infra
structure as our main test bed.

For our evaluations, we selected three MPI applications with different communica
tion and computation requirements, namely, (i) the Matrix multiplication , (ii) Kmeans
clustering, and (iii) the Concurrent Wave Equation solver. Table 4 highlights the key
characteristics of the programs that we used for benchmarking .

Table 4. Computation andcommunication complexities of the different MPIapplications used

Application Matrix multiplication Kmeans Clustering Concurrent WaveEguation
Description Implements Cannon's Implements Kmeans A vibrating stringis

Algorithm Clustering Algorithm decomposed(split) into
Assume a rectangular Fixednumber of points, andeachMPI
process grid iterations are process is responsiblefor
(Fig. 1- left) performed in eachtest updating the amplitude of a

number of pointsover
time.

Grain size(n) Number of pointsin a Number of datapoints Number of pointshandled
matrix blockhandled handled by a single by eachMPIprocess
by eachMPIprocess MPI process

Cornmunica- EachMPIprocess AllMPIprocesses In eachiteration, eachMPI
tionPattern communicates withits sendpartial clusters to process exchanges

neighbors in bothrow one MPIprocess (rank boundary points withits
wiseandcolumn wise 0). Rank0 distribute nearest neighbors

the newclustercenters
to alI thenodes

Computation 0((-rn)3) 0((-rn)3) O(n)
perMPI
process
Communica- 0((-rn)2) 0(1) 0(1)
tionper MPI
process
C/C o(Jn) O(~) o(~)
Message Size (-rn)2=n D - Where D is the Eachmessage contains a

number of cluster double value
centers.

Communica- MPCSendrecvJ eplac MPCReduce() MPCSendrecv()
tion routines eO MPCBcast()
used

6 Benchmarks and Results

The Eucalyptus (version 1.4) infrastructure we used is deployed On 16 nodes of an
iDataplex cluster, each of which has 2 Quad Core Intel Xeon processors (for a total
of 8 CPU cores) and 32 GB of memory. In the bare-metal version, each node runs a
Red Hat Enterprise Linux Server release 5.2 (Tikanga) operating system. We used
OpenMPI version 1.3.2 with gee version 4.1.2 . We then created a VM image from

30 1. Ekanayake andG. Fox

this hardware configuration, so that we have a similar software environment on the
VMs once they are deployed. The virtualization is based on Xen hypervisor (version
3.0.3). Both bare-metal and virtualized resources utilize giga-bit Ethernet connections.

When VMs are deployed using Eucalyptus, it allows configuring the number of
CPU cores assigned to each VM image. For example, with 8 core systems, the CPU
core allocation per VM can range from 8 cores to I core per VM, resulting in several
different CPU core assignment strategies. In Amazon EC2 infrastructure, the standard
instance type has Y2 a CPU per VM instance [28]. In the current version of Eucalyp
tus, the minimum number of cores that we can assign for a particular VM instance is
I; hence, we selected five CPU core assignment strategies (including the bare-metal
test) listed in Table 5.

Table 5. Different hardware/virtual machine configurations usedfor performance evaluations

Ref Description Number of CPU Amount of memo- Number of
cores accessible ry (GB)accessible virtualor bare-
to the virtual or to the virtual or metal nodes
bare-metal node bare-metal node deployed

BM Bare-metal node 8 32 16
I-VM-8- I VM instance per 8 30 (2GB is re- 16
core bare-metal node servedfor DomO)
2-VM-4- 2 VMinstances per 4 15 32
core bare-metal node
4-VM-2- 4 VMinstances per 2 7.5 64
core bare-metal node
8-VM-l- 8 VM instances per 3.75 128
core bare-metal node

We ran all the MPI tests, on all 5 hardwareNM configurations, and measured the
performance and calculated speed-ups and overheads. We calculated two types of
overheads for each application using formula (1). The total overhead induced by the
virtualization and the parallel processing is calculated using the bare-metal single
process time as T(1) in the formula (1). The parallel overhead is calculated using the
single process time from a corresponding VM as T(1) in formula (1). The average
times shown in figures are obtained using 60 repeated runs for each and every mea
surement.

In all the MPI tests we performed, we used the following invariant to select the
number of parallel processes (MPI processes) for a given application.

Number ofMPI processes = Number of CPU cores used. (2)

For example, for the matrix multiplication application, we used only half the number
of nodes (bare-metal or VMs) available to us, so that we have 64 MPI processes =64
CPU cores. (This is mainly because the matrix multiplication application expects the
MPI processes to be in a square grid, in contrast to a rectangular grid). For Kmeans
clustering, we used all the nodes, resulting in a total of 128 MPI processes utilizing all
128 CPU cores. Some of the results of our analysis highlighting different characteriz
es we observe are shown in Fig. 6 through 13.

High Performance Parallel Computing with Clouds and Cloud Techn ologies 31

70 Bare-metal ---B--
1-VM ---6---

2-VMs ·····A····

60 4·VMs -vo--
~

6-VMs --+ _.-

"c 500
u
4l
~ 404l

,§
CIl 30
Cls
4l

~ 20

10
-~-::.:=~

0
1024 2046 3072 4096 5120 6144

Dimension of a matrix

Fig. 6. Performance of the matrix multiplication application (Number of MPI processes =64)

500 r--.-~---'-------~----,
Bare-metal~

1-VM ----0··-·
2-VMs ···· ·A·· ···

400 4-VMs ·..·· 9· ·

8-VMs-..
~

~ 300
~

"i 200

(j)

100

o L-.---"--_--'-_ ----' ----' -.J

9 16 25 36 64 81

Number ofMPIprocesses =Number ofCPU cores

Fig. 7. Speed-up of the matrix multip lication application (Matrix size = 5184x5184)

4

Bare-metal -e
1·VM ---<>-••
2·VM .
4-VM ----V"'.
8-VM _._.+_._.

10 16 20 30 40
Number3D datapoints (millions)

Fig . 8. Performance of Kmeans clustering (Number of MPI Processes = 128)

32 J. Ekanayake and G. Fox

Bare-metal -B-
l -VM ----9---

2-VMsl!.

4-VMs -. .", •..
8-VMs _..+ . .

0.2

1.258-006e-006 8e-Q06

l /Grsin Size (log scale)

o l..a:::o===fl::==:=:it::::~=======1J
38-006

Fig. 9. Total overheadof the Kmeans clustering(Numberof MPI Processes= 128)

90

80

~
70

60

i= 50
"a.
" 40

I
(J)

Bsre-metal -B-
l -VM ----6---.

2-VMs l!. .
4-VMs ." .
8-VMs . •+--

32 48 64 80 96 112
Numberof MPIprocesses = Number of CPUcores

Fig. to.Speed-upof the Kmeans clustering(Number of data points = 860160)

0.5

Bare-metal-B-
l-VM ----6----

2-VMs l!. ...

4-VMs --....
8-VMs ---+ ---

i.ase-oo6e·006 6e-006
lIGrain Size (log scale)

o~===::§::======~~=====:f
38-006

Fig. 11. Paralleloverhead of the Kmeans clustering (Number of MPI Processes=128)

High Performance Parallel Computing with Clouds and Cloud Technologies 33

3

2.5

...
"C
e 28
"~
" 1.5E..
"'"~
>-c

0.5

Bare-metal -e-
1-W ·---0---

2-VMs/> ••.•

4-VMs -- v-
8-VMs - _.+ -.-

4096030720
Numberof points

20480

oL- ~ __'_ ~______'

8192 51200

Fig.12.Performance of theConcurrent Wave Solver (Number of MPI Processes = 128)

0.0160.008 0.012
1/GrainSize

0.004

~
0.8

~ 0.6

f
!';.
II 0.4

"C
co

"-E
"> 0.20

0

Bare-metal -e- ,/
1-VM ----0---- •__ v

2-VMs/> ...

J~~~-;:/%'::_- _:

Fig. 13.Total overhead of theConcurrent Wave Solver (Number of MPI Processes=128)

For the matrix multiplication, the graphs show very close performance characteris
tics in all the different hardwareNM configurations. As we expected, the bare-metal
has the best performance and the speedup values, compared to the VM configurations
(apart from the region close to the matrix size of 4096x4096 where the VM perform
better than the bare-metal. We have performed multiple tests at this point, and found
that it is a due to cache performances of the bare-metalnode). After the bare-metal, the
next best performance and speed-upsare recorded in the case of 1-VM per bare-metal
node configuration, in which the performance difference is mainlydue to the overhead
induced by the virtualization. However, as we increase the number of VMs per bare
metal node, the overheadincreases. At the 81 processes, 8-VMs per node configuration
shows about a 34% decrease in speed-upcompared to the bare-metal results.

In Kmeansclustering, the effect of virtualized resources is much clearer than in the
case of the matrix multiplication. All VM configurations show a lower performance
compared to the bare-metal configuration. In this application, the amount of data
transferred between MPI processes is extremely low compared to the amount of data
processed by each MPI process, and also, in relation to the amount of computations
performed. Fig. 9 and Fig. II show the total overhead and the parallel overhead for

34 J. Ekanayake andG. Fox

Kmeans clustering under different VM configurations. From these two calculations,
we found that, for VM configurations, the overheads are extremely large for data set
sizes of less than 10 million points, for which the bare-metal overhead remains less
than 1 (<I for all the cases). For larger data sets such as 40 million points, all over
heads reached less than 0.5. The slower speed-up of the VM configurations (shown in
Fig. 10) is due to the use of a smaller data set (-800K points) to calculate the speed
ups. The overheads are extremely large for this region of the data sizes, and hence, it
resulted in lower speed-ups for the VMs.

Concurrent wave equation splits a number of points into a set of parallel processes,
and each parallel process updates its portion of the points in some number of steps.
An increase in the number of points increases the amount of the computations per
formed. Since we fixed the number of steps in which the points are updated, we ob
tained a constant amount of communication in all the test cases, resulting in a CIC
ratio of O(l/n). In this application also, the difference in performance between the
VMs and the bare-metal version is clearer, and at the highest grain size the total over
head of 8-VMs per node is about 7 times higher than the overhead of the bare-metal
configuration. The performance differences between the different VM configurations
become smaller with the increase in grain size.

From the above experimental results, we can see that the applications with lower
CIC ratios experience a slower performance in virtualized resources. When the
amount of data transferred between MPI processes is large, as in the case of the ma
trix multiplication, the application is more susceptible to the bandwidth than the la
tency. From the performance results of the matrix multiplication, we can see that the
virtualization has not affected the bandwidth considerably. However, all the other
results show that the virtualization has caused considerable latencies for parallel ap
plications, especially with smaller data transfer requirements . The effect on latency
increases as we use more VMs in a bare-metal node.

According to the Xen para-virtualization architecture [6], domUs (VMs that run on
top of Xen para-virtualization) are not capable of performing I/O operations by them
selves. Instead, they communicate with domO (privileged OS) via an event channel
(interrupts) and the shared memory, and then the domO performs the I/O operations on
behalf of the domUs. Although the data is not copied between domUs and domO, the
domO needs to schedule the I/O operations on behalf of the domUs. Fig. l4(top) and
Fig. 14 (bottom) shows this behavior in 1-VM per node and 8-VMs per node configu
rations we used.

In all the above parallel applications we tested, the timing figures measured corres
pond to the time for computation and communication inside the applications. There
fore, all the 1/0 operations performed by the applications are network-dependent.
From Fig. 14 (bottom), it is clear that DomO needs to handle 8 event channels when
there are 8-VM instances deployed on a single bare-metal node. Although the 8 MPI
processes run on a single bare-metal node, since they are in different virtualized re
sources, each of them can only communicate via DomO. This explains the higher
overhead in our results for 8-VMs per node configuration. The architecture reveals
another important feature as well - that is, in the case of 1-VM per node configuration,
when multiple processes (MPI or other) that run in the same VM communicate with

HighPerformance ParallelComputing withClouds and CloudTechnologies 35

C¥- - -..Event Channel

DomO DornU.
...... PV Block IMP II IMPI I ..~,...... Backend PV BlockI 1 2 S

Driver Driver ~

~ Xen Hypervisor

Shared Memory

Core 11Core1 I CoreS

Event Channels 0
DomO DomU, Dorn Us

E:. PV
I M;' IS - Block

Driver

XenHypervisor

SharedMemory

Core1 Core1 CoreS

Fig. 14. Communication between domO and domU when I-VM per node is deployed (top).
Communication betweendomO and domUs when8-VMs per node are deployed (bottom).

lAM·MP1 _
OpenMPI _

10----------~::=:-===_

Fig. 15. LAM vs. OpenMPI (OMPI) underdifferent VM configurations

each other via the network, all the communications must be scheduled by the domO.
This results higher latencies. We could verify this by running the above tests with
LAM MPI (a predecessor of OpenMPI, which does not have improved support for
in-node communications for multi-core nodes). Our results indicate that, with
LAM MPI, the worst performance for all the test occurred when 1-VM per node is
used. For example , Fig. 15 shows the performance of Kmeans clustering under bare
metal, 1-VM, and 8-VMs per node configurations. This observation suggests that,
when using VMs with multiple CPUs allocated to each of them for parallel
processing, it is better to utilize parallel runtimes, which have better support for in
node communication.

36 1. Ekanayake andG. Fox

7 Conclusions andFuture Work

From all the experiments we have conducted and the results obtained, we can come to
the following conclusions on performing parallel computing using cloud and cloud
technologies .

Cloud technologies work well for most pleasingly-parallel problems. Their support
for handling large data sets, the concept of moving computation to data, and the better
quality of services provided such as fault tolerance and monitoring, simplify the
implementation details of such problems over the traditional systems.

Although cloud technologies provide better quality of services such fault tolerance
and monitoring, their overheads are extremely high for parallel applications that re
quire complex communication patterns and even with large data sets, and these over
heads limit the usage of cloud technologies for such applications. It may be possible
to find more "cloud friendly" parallel algorithms for some of these applications by
adopting more coarse grained task/data decomposition strategies and different parallel
algorithms. However, for other applications, the sheer performance of MPI style
parallel runtimes is still desirable.

Enhanced MapReduce runtimes such as CGL-MapReduce allows iterative style
applications to utilize the MapReduce programming model, while incurring minimal
overheads compared to the other runtimes such as Hadoop and Dryad.

Handling large data sets using cloud technologies on cloud resources is an area that
needs more research. Most cloud technologies support the concept of moving compu
tation to data where the parallel tasks access data stored in local disks. Currently, it is
not clear to us how this approach would work well with the VM instances that are
leased only for the duration of use. A possible approach is to stage the original data in
high performance parallel file systems or Amazon S3 type storage services, and then
move to the VMs each time they are leased to perform computations .

MPI applications that are sensitive to latencies experience moderate-to-higher
overheads when performed on cloud resources, and these overheads increase as the
number of VMs per bare-hardware node increases . For example, in Kmeans cluster
ing, I-VM per node shows a minimum of 8% total overhead, while 8-VMs per node
shows at least 22% overhead. In the case of the Concurrent Wave Equation Solver,
both these overheads are around 50%. Therefore, we expect the CPU core assignment
strategies such as Y2 of a core per VM to produce very high overheads for applications
that are sensitive to latencies.

Improved virtualization architectures that support better I/O capabilities, and the
use of more latency insensitive algorithms would ameliorate the higher overheads in
some of the applications. The former is more important as it is natural to run many
VMs on future many core CPU architectures.

Applications those are not susceptible to latencies, such as applications that per
form large data transfers and/or higher Communication/Computation ratios, show
minimal total overheads in both bare-metal and VM configurations . Therefore, we
expect that the applications developed using cloud technologies will work fine
with cloud resources, because the milliseconds-to-seconds latencies that they already
have under the MapReduce model will not be affected by the additional overheads
introduced by the virtualization . This is also an area we are currently investigating .
We are also building applications (biological DNA sequencing) whose end to end

High Performance Parallel Computing with Clouds and Cloud Technologies 37

implementation from data processing to filtering (data-mining) involves an integration
of MapReduce and MPI.

Acknowledgements

We would like to thank Joe Rinkovsky and Jenett Tillotson from IV Ul'I'S for their
dedicated support in setting up a private cloud infrastructure and helping us withvari
ousconfigurations associated withourevaluations.

References

I. AmazonElastic ComputeCloud (EC2), ht tp: I l aws . amazon . com /ec2 1
2. AmazonSimpleStorage Service (S3), http : I l aws . amazon . com/ s3 I
3. GoGrid Cloud Hosting,http: / /www.gogrid.com/
4. Keahey,K., Foster, I., Freeman, T., Zhang, X.: Virtual Workspaces: Achieving Quality of

Service and Quality of Life in the Grid. Scientific Programming Journal 13(4), 265-276
(2005); Special Issue: DynamicGrids and Worldwide Computing

5. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Seman, S., Youseff, L., Zagorod
nov, D.: The EucalyptusOpen-sourceCloud-computing System. In: CCGrid 2009: the 9th
IEEE International Symposium on Cluster Computing and the Grid, Shanghai, China
(2009)

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I., Warfield, A.: Xen and the art of virtualization. In: Proceedingsof the NineteenthACM
Symposiumon OperatingSystems Principles, SOSP 2003, pp. 164-177. ACM, New York
(2003), http : / /doi.acm. org /10.1145 /945445 .945462

7. ApacheHadoop,http: / /hadoop . apache. org I corel
8. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributeddata-parallel pro

grams from sequential building blocks. In: European Conference on Computer Systems
(2007)

9. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P., Currey, J.: Dryad
LINQ: A System for General-Purpose DistributedData-Parallel ComputingUsing a High
Level Language. In: Symposium on Operating System Design and Implementation (OS
01), San Diego, CA (2008)

10. Ekanayake, J., Pallickara, S., Fox, G.: MapReduce for Data Intensive Scientific Analysis.
In: Fourth IEEE International Conferenceon eScience,Indianapolis, pp. 277-284 (2008)

11. Huang, X., Madan, A.: CAP3: A DNA Sequence Assembly Program. Genome Research
9(9), 868-877 (1999)

12. Hartigan,1.: ClusteringAlgorithms. Wiley,Chichester (1975)
13. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. ACM

Commun. 51,107-113 (2008)
14. MPI (MessagePassing Interface), http: / /www-unix .mcs. anl . gov /mpi l
15. Dongarra,J., Geist, A., Manchek, R., Sunderam, V.: IntegratedPVM framework supports

heterogeneous networkcomputing. Computersin Physics 7(2), 166-175 (1993)
16. Ludascher,B., Altintas, I., Berkley, C, Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E.,

Tao, J., Zhao, Y.: Scientific WorkflowManagement and the Kepler System. Concurrency
and Computation: Practice & Experience(2005)

38 J. Ekanayake and G. Fox

17. Hull, D., Wolstencroft, K., Stevens,R., Goble,C., Pocock,M., Li, P., Oinn, T.: Taverna: a
tool for buildingand running worktlows of services. NucleicAcids Research (Web Server
issue),W729 (2006)

18. Raicu, I., Zhao, Y., Dumitrescu, c, Foster, I., Wilde, M.: Falkon: a Fast and Light-weight
tasK executiON framework. In: Proceedings of the ACMIIEEE Conference on Supercom
puting,SC 2007, Nevada, ACM, New York (2007),
http : / /doi.acm .org/ lO.1145 /1362622 .1362680

19. Pallickara, S., Pierce, M.: SWARM: Scheduling Large-Scale Jobs over the Loosely
Coupled HPC Clusters. In: Fourth IEEE International Conference on eScience, pp. 285
292 (2008)

20. Frey, 1.:Condor DAGMan: HandlingInter-JobDependencies,
http: / /www.bo .infn.it /calcolo /condor /dagman /

21. Foster, I.: The Anatomy of the Grid: EnablingScalable VirtualOrganizations. In: Proceed
ings of the 7th international Euro-Par Conference Manchester on Parallel Processing
(2001)

22. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. SIGOPS Oper. Syst.
Rev. 37(5), 29--43 (2003), http : / /doi .acm .org/10.1145 /1165389 . 945450

23. Pallickara, S., Fox, G.: NaradaBrokering: A Distributed Middleware Framework and Ar
chitecture for Enabling Durable Peer-to-Peer Grids. In: Endler, M., Schmidt, D.C. (eds.)
Middleware 2003. LNCS, vol. 2672, pp. 41-61. Springer, Heidelberg (2003)

24. Gu, Y., Grossman, R.: Sector and Sphere: The Design and Implementation of a High Per
formance Data Cloud. Philosophical Transactions A Special Issue associated with the UK
e-ScienceAll HandsMeeting(2008)

25. Moretti, c, Bui, H., Hollingsworth, K., Rich, B., Flynn, P., Thain, D.: All-Pairs: An Ab
straction for Data Intensive Computing on Campus Grids. IEEE Transactions on Parallel
and Distributed Systems(2009)

26. Youseff, L., Wolski, R., Gorda, B., Krintz, c.: Evaluating the Performance Impact of
Xen on MPI and Process Execution For HPC Systems. In: Proceedings of the 2nd interna
tional Workshop on Virtualization Technology in Distributed Computing. IEEE Computer
Society, Washington (2006), http : / /dx .doi . org/10 . 1109 /VTDC .2006 .4

27. Constantinos, E., Hill, N.: Cloud Computingfor parallelScientificHPC Applications: Fea
sibility of Running Coupled Atmosphere-Ocean Climate Models on Amazon's EC2. In:
CloudComputing and Its Applications, Chicago, IL (2008)

28. Walker, E.: benchmarking AmazonEC2 for high-performance scientific computing,
http: / /www.usenix.org /publications /login/
2008-10 /openpdfs /walker.pdf

29. Gavrilovska, A., Kumar, S., Raj, K., Gupta, V., Nathuji, R., Niranjan, A., Saraiya, P.:
High-Performance Hypervisor Architectures: Virtualization in HPC Systems. In: 1st
Workshop on System-level Virtualization for High Performance Computing(2007)

30. Fox, G., Bae, S., Ekanayake, J., Qiu, X., Yuan, H.: Parallel Data MiningfromMulticoreto
CloudyGrids. In: High Performance Computingand Grids workshop (2008)

31. Johnsson, S., Harris,T., Mathur, K.: Matrix multiplication on the connection machine. In:
Proceedings of the 1989 ACMIIEEE Conference on Supercomputing, Supercomputing
1989, pp. 326-332. ACM,NewYork (1989),
http : / /doi .acm .org /lO .1145 /76263 .76 298

Cloud Computing Platforms

Track Session 1

Cloud@Home on Top of RESERVOIR

Vincenzo D. Cunsolo, Salvatore Distefano, and Antonio Puliafito*

University of Messina,
Contrada di Dio, S. Agata, 98166 Messina, Italy
{Vdcun5010,5di5tefano,apuliafito}~unime .it

Abstract . Cloud comput ing is the emerging technology in distributed,
autonomic, service-oriented, on-demand , trusted computing. Th e fact
that several Cloud solutions have been implemented so far , such as Ama
zon EC2 and S3, IBM's Blue Cloud , Sun Network.com, Microsoft Azure
Services Platform, etc ., is evidence of the great success already achieved
by this computing paradigm. On th e other hand , an increasing number
of research projects focus on Cloud (Nimbus, OpenNEbula, Eucalyp
tus , OpenQRM , RESERVOIR, etc.) thus confirming th at th e topic is
really hot, attracts investmen ts and funds , and involves more and more
researchers.

Our idea of Cloud has been synthesized into Cloud@Home, a com
puting paradigm that supports both open and commercial communities.
Starting from the contribution philosophy at th e basis of the Volunteer
computing paradigm, we imagine a Cloud built on off the shelf, inde
pendent, network-connected resources and devices owned and managed
by different users. Such users can both sell and /or buy their resources
to/from Cloud providers or, alternatively, th ey can share them with other
users establishing open interoperable Clouds.

Being aware of the crucial and driving role played by th e RESER
VOIR project in defining and implementing a reference archit ecture for
Cloud computing, in this paper we focus on how to adapt and use the re
sults of such project in the Cloud@Home specification . Starting from the
RESERVOIR archit ecture, we discuss and detail how the Cloud@Home
paradigm can be implemented on top of it , individuating components and
modules to be integrat ed in a new reference architecture which allows to
extend RESERVOIR towards th e Volunteer contributing paradigm, im
proving SLA management and federat ion issues and , at the same time,
enhancing virtualization and resources management in Cloud@Home.

Keywords: Cloud computing, Volunte er computing, cross-platform
interoperability, RESERVOIR.

1 Introduction and Motivation

Cloud computing is a distributed/network computing paradigm that mixes as
pects and goals of several other paradigms such as: Grid computing ("... hardware

* The research leading to these result s is partially supported by the European Com
munity's Seventh Framework Programme (FP7/200l-2013) under grant agreement
n 215605.

n.R. Avr esky et a l. (Eds.) : Cloudcom p 2009 , LNICST 34, pp . 41- 56, 2010 .
© Instit ute for Comp uter Scien ces , Social-Informatics and Telecommunicati on s Eng ineer ing 2010

42 V.D. Cunsolo, S. Distefano, and A. Puliafito

and software infrastructure that provides dependable, consistent, pervasive, and
inexpensive access to high-end computational capabilities" [1]), Internet comput
ing ("... a computing platform geographically distributed across the Internet"
[2]), Utility computing ("a collection of technologies and business practices that
enables computing to be delivered seamlessly and reliably across multiple com
puters, ... available as needed and billed according to usage, much like water and
electricity are today" [3]) Autonomic computing ("computing systems that can
manage themselves given high-level objectives from administrators" [4]) , Edge
computing ("... provides a generic template facility for any type of application
to spread its execution across a dedicated grid, balancing the load ..." [5]) Green
computing (a new frontier of Ethical computing starting from the assumption
that in next future energy costs will be related to the environment pollution [6])
and Trusted computing ("... a Trusted platform is a computing platform that
has a trusted component, probably in the form of built-in hardware, which it
uses to create a foundation of trust for software processes." [7]) .

Cloud computing is a distributed computing paradigm derived from the
service-centric perspective that is quickly and widely spreading on the IT world.
From this perspective , all capabilities and resources of a Cloud (usually geo
graphically distributed) are provided to users as a service, to be accessed through
the Internet without any specific knowledge of, expertise with, or control over
the underlying technology infrastructure that supports them . Cloud computing
provides on-demand service provision, QoS guaranteed offer, and autonomous
system for managing hardware, software and data transparently to users [8].

In order to achieve such goals it is necessary to implement a levelof abstraction
of physical resources, uniforming their interfaces and providing means for their
management , adaptively to user requirements. The development and the success
of Cloud computing is due to the maturity reached by the hardware and software
virtualization and Web technologies.

A great interest on Cloud computing has been manifested as demonstrated by
the numerous projects proposed by both industry and academia . In commercial
contexts, among the others we highlight: Amazon Elastic Compute Cloud [9],
IBMs Blue Cloud [10], Sun Microsystems Network.com [11], Microsoft Azure
Services Platform [12], Google App Engine [13], Dell Cloud computing solutions
[14]. Some scientific activities worth of mention are: RESERVOIR [15], Nimbus
Stratus-Wispy-Kupa [16], Eucalyptus [17], OpenQRM [18] and Openl\'Ebula
[19]. All of them support and provide an on-demand computing paradigm: a
user submits his/her requests to the Cloud that remotely processes them and
gives back the results. This client-server model well fits aims and scopes of com
mercial Clouds: the business. But, on the other hand, it represents a restriction
for scientific Clouds, that have an open view [20,21], closer to that of Volun
teer computing. Volunteer computing (also called Peer-to-Peercomputing, Global
computing or Public computing) uses computers volunteered by their owners as
a source of computing power and storage to provide distributed scientific com
puting [22] . It is behind the i/@home" philosophy of sharing/donating network
connected resources for supporting distributed scientific computing.

Cloud@Home on Top of RESERVOIR 43

In [23] we introduced Cloud@Home, a more "democratic" form of Cloud com
puting in which the resources of the users accessing the Cloud can be shared
in order to contribute to the computing infrastructure. The proposed solu
tion allows to overcome both hardware and software compatibility problems
of Volunteer computing and , in commercial contexts , it can establish an open
computing-utility market where users can both buy and sell their services. Since
the computing power can be described by a "long-tailed" distribution, in which
a high-amplitude population (Cloud providers and commercial data centers) is
followed by a low-amplitude population (small data centers and private users)
which gradually "tails off" asymptotically, Cloud@Homecan catch the Long Tail
effect [24], providing similar or higher computing capabilities than commercial
providers' data centers, by grouping small computing resources from many single
contributors.

In order to make real such vision of Cloud, we decide to base a possible im
plementation on a riper architecture. Since from the infrastructure point of view
one of the most important activity on Cloud is carried on by the RESERVOIR
project, as above introduced, we choose to start from such architecture in or
der to develop the Cloud@Home infrastructure. More specifically, in this paper
we investigate how to implement Cloud@Home starting from the RESERVOIR
architecture, mainly building an extra layer on top of it .

Thus , in section 2 we describe the architecture of both the RESERVOIR
and the Cloud@Home infrastructures, comparing the two architectures in the
following section 3. Section 4 describes the implementation of Cloud@Home on
top of RESERVOIR. Finally, section 5 summarizes the paper also discussing
about challenges and future work.

2 Background

In this section we summarize the RESERVOIR (subsection 2.1) and the Cloud@
Home (subsection 2.2) projects and the corresponding architectures.

2.1 RESERVOIR

RESERVOIR (REsources and SERvices VirlualizatiOn wIthout baRriers) [15,25]
is an European Union FP7 funded project that will enable massive scale deploy
ment and management of complex IT services across different administrative
domains, IT platforms and geographies. The project will provide a foundation
for a service-based online economy, where - using virtualization technologies
resources and services are transparently provisioned and managed on an on
demand basis at competitive costs with high quality of service.

The RESERVOIR vision is to enable on-demand delivery of IT services at
competitive costs, without requiring a large capital investment in infrastruc
ture. The model is inspired by a strong desire to liken the delivery of IT ser
vices to the delivery of common utilities. It starts from the consideration that
no single provider can serve all customers at all times, thus , next-generation

44 V.D. Cunsolo, S. Distefano, and A. Puliafito

Cloud computing infrastructure should support a model where multiple inde
pendent providers can cooperate seamlessly to maximize their benefit. In their
vision, to truly fulfill the promise of Cloud computing, there should be techno
logical capabilities to federate disparate data centers , including those owned by
separate organizations. Only through federation and interoperability infrastruc
ture providers can take advantage of their aggregated capabilities to provide a
seemingly infinite service computing utility. This view is totally shared by the
Cloud@Home project.

I ,.~n, ,~ -t-::r iT- -- - - ~~:::::.; - - - - - -n il ::-
~: ~ :11
=:j: l : [SLAJ

~I / ~IVEE Manager (VEEM)
I I I
I I I
I I I
I I I
I I I
I I I

CJ
1 I I

1 ll~I I I

___ : VEE Host (VEEH) : :
I (e.g.• Hypervisor. VJSC Host) I I
I I I
I I I
I ReservoirSiteI I__ _ _ _ __ _ • 1 1 1 _

Fig.!. RESERVOIR Architecture

The RESERVOIR architecture depicted in Fig. 1 is designed to provide a clean
separation of concerns among the layers operating at different levels of abstrac
tion. The rationale behind this particular layering is to keep a clear separation
of concerns and responsibilities and to hide low level infrastructure details and
decisions from high-level management and service providers . The Service Man
ager is the highest level of abstraction, interacting with the service providers
to receive their Service Manifests, negotiate pricing, and handle billing. Its two
most complex tasks are: 1) deploying and provisioning VEEs based on the Ser
vice Manifest, and 2) monitoring and enforcing SLA compliance by throttling
a service application's capacity. The Service Manager is also responsible for
monitoring the deployed services and adjusting their capacity, i.e., the number
of VEE instances as well as their resource allocation (memory, CPU , etc.), to
ensure SLA compliance and alignment with high-level business goals (e.g., cost
effectiveness). Finally, the Service Manager is responsible for accounting and
billing.

Cloud@Home on Top of RESERVOIR 45

The Virtual Execution Environment Manager (VEEM) is the next level of
abstraction, interacting with the Service Manager above, VEE Hosts below, and
VEE Managers at other sites to enable federation. The VEEM is responsible for
the optimal placement of VEEs into VEE hosts subject to constraints determined
by the Service Manager. The VEEM is free to place and move VEEs anywhere,
even on the remote sites (subject to overall cross-site agreements) , as long as the
placement satisfies the constraints. Thus, in addition to serving local requests
(from the local Service Manager), VEEM is responsible for the federation of
remote sites. At the VEEM level a service is provided as a set of inter-related
VEEs (a VEE Group), and hence it should be managed as a whole.

The Virtual Execution Environment Host (VEEH) is the lowest level of ab
straction, interacting with the VEE Manager to realize its IT management de
cisions onto a set of virtualization platforms. The VEEH is responsible for the
basic control and monitoring of VEEs and their resources (e.g., creating a VEE,
allocating additional resources to a VEE, monitoring a VEE, migrating a VEE,
creating a virtual network and storage pool, etc.). Each VEEH type encapsu
lates a particular type of virtualization technology, and all VEEH types expose a
common interface such that VEEM can issue generic commands to manage the
life-cycle of VEEs. The receiving VEEH is responsible for translating these com
mands into commands specific to the virtualization platform being abstracted.

The layered design stresses the use of standard, open, and generic protocols
and interfaces to support vertical and horizontal interoperability between layers.
Different implementations of each layer will be able to interact with each other.
The Service Management Interface (SMI) with its service manifest exposes a
standardized interface into the RESERVOIR Cloud for service providers. The
service provider may then choose among RESERVOIR cloud providers knowing
that they share a common language to express their business requirements . The
VEE Management Interface (VMI) simplifies the introduction of different and
independent IT optimization strategies without disrupting other layers or peer
VEEMs. Further, VMI's support of VEEM-to-VEEM communication simplifies
cloud federation by limiting the horizontal interoperability to one layer of the
stack. The VEE Host Interface (VHI) will support plugging-in of new virtual
ization platforms (e.g., hypervisors) , without requiring VEEM recompilation or
restart.

2.2 Cloud@Home

Cloud@Home intends to reuse "domestic " computing resources to build volun
tary contributors ' Clouds that can interoperate each other and with external
commercial Clouds, such as Amazon EC2, IBM Blue Cloud, Microsoft Azure
Services Platform, and so on. With Cloud@Home, anyone can experience the
power of Cloud computing, both actively providing his/her own resources and
services, and passively submitting his/her applications .

In Cloud@Home both the commercial/business and the volunteer/scientific
viewpoints coexist: in the former case the end-user orientation of Cloud is ex
tended to a collaborative two-way Cloud in which users can buy and/or sell

46 V.D. Cunsolo, S. Distefano, and A. Puliafito

their resources/services; in the latter case, the Grid philosophy of few but large
computing requests is extended and enhanced to open Virtual Organizations. In
both cases QoS requirements could be specified, introducing both in the Grid
and in the Volunteer philosophy (best effort) the concept of quality.

Cloud@Home can be also considered as a generalization and a maturation
of the @home philosophy: a context in which users voluntarily share their re
sources without any compatibility problem. This allows to knock down both
hardware (processor bits, endianness , architecture, network) and software (op
erating systems , libraries , compilers, applications, middlewares) barriers of Grid
and Volunteer computing, into a service oriented architecture.

On the other hand, Cloud@Home can be considered as the enhancement of
the Grid-Utility vision of Cloud computing. In this new paradigm, users' hosts
are not passive interfaces to Cloud services, but they can be actively involved
in computing. Single nodes and services can be enrolled by the Cloud@Home
middleware, in order to build own-private Cloud infrastructures that can (for
free or by charge) interact with other Clouds.

y
A.\, ',

End·User 2

End-U... 3 C@H4,5

Fig. 2. Cloud@Home Scenario

End·U... '

End-Use< 5

The key points of Cloud@Home are on one hand the volunteer contribution
and on the other the interoperability among Clouds. Well-known problems for
the parallel, distributed and network computing communities have to be ad
dressed regarding security, QoS, SLA, resource enrollment and management ,
heterogeneity of hw and sw, virtualization , etc . All of them must be contextu
alized into an highly dynamic environment in which nodes and resources can

Cloud@Home on Top of RESERVOIR 47

frequently change state, instantaneously becoming available/ unavailable. Prob
lems that are also partially shared and faced by the RESERVOIR project , in
particular with regard to virt ualization, resource management and interoper
ability. This motivates our choice of developing the Cloud@Home architecture
on top of the RESERVOIR architecture above introduced .

The Cloud@Home idea can be pictorially depicted in Fig. 2, where several
different Clouds, also built on volunteered resources (open Clouds), can interact
and can provide resources and services to the other federated Clouds. They are
characterized as: open if identify open environments operating for free Volunteer
computing; commercial if they represent ent ities or companies selling their com
puting resources for business; hybrid if they can both sell or give for free their
services. Both open and hybrid Clouds can interoperate with any other Clouds,
also commercial, while these latter can interoperate each other if and only if
the two commercial Clouds are mutually recognized. In this way it is possible to
make federations of Clouds working together on the same project. Thus, a user
interacting with a specific Cloud can use resources from different other Clouds,
implementing different access points for a unique, global computing infrastruc
ture. Such a form of computing , in which workloads and requests can be spread
among different interoperable Cloud infrast ructures, can be ideally associated
to a fluid, giving rise to a new concept of computing we can identify as fluid
computing.

The Cloud@Home logic architecture [23] by which we try to implement such
idea is shown in Fig. 3, where three hierarchical layers can be identified:

Contributin Host

reCha

f--t-- - t---l C@H FS

-r-PK1-

LC::~ F';'~~ Web2.0
RESTI
SOAP

Fronlend LlJyer

/\ Frontend
End

8 8 ' 8 8User

RESTI EConsumer Host SOAP
Virtual Storage

~ PKI Contribut ing Fron/end

/\
Contribubng

User

Fig. 3. Cloud@Home Architecture

- The Fronietul Layer that globally manages resources and services (coordina
tion , discovery, enrollment, etc) , implements the user interface for accessing
the Cloud (ensuring security reliability and interoperability), and provides
QoS and business models and policies management facilities.

- The Virtual Layer that implements a homogeneous view of the distrib uted
Cloud system offered to the higher frontend layer (and therefore to users)

48 V.D. Cunsolo, S. Distefano, and A. Puliafito

in form of two main basic services: the execution service that allows to set
up a virtual machine, and the storage service that implements a distributed
storage Cloud to store data and files as a remote disk, locally mounted or
accessed via Web.

- The bottom Physical Layer that provides both the physical resources for
elaborating incoming requests and the software for locally managing such
resources.

According to this view the Cloud is composed of several contributing hosts that
share their resources. A user can interact with the Cloud through the consumer
host after authenticating him/herself into the system . One of the main enhance
ment of Cloud@Home is that a host can be at the same time both contributing
and consumer host, establishing a symbiotic mutual interaction with the Cloud.

os

Storage Cloud

Host OS

Execution Cloud
'----_I

VM Scheduler I, Storage l'-I Master : ~
..... ... - .. - .. . - - - - - - . - - . - . - - . - - . . - - - - - - .. - - . 1::

VM Provider I VM : :>
Chunk Storage

~~~~:~re ,.. Provider R=~;~re i-
HyperVisor I

: CIl E
. ~ ~

::l l/l
' 0 :...
' l/l l/l
. CIl .Q

:0: ~

Fig. 4. Core Structure of a Cloud@Home Server

The blocks implementing the functional architecture of Fig. 3, are depicted in
the layered model of Fig. 4, that reports the core structure of the Cloud@Home
server-side, subdivided into management and resource subsystems:

- Management subsystem - is the backbone of the overall system management
and coordination composed of six blocks: the C@H infrastructure frontend,
the Cloud broker, the resource engine, the policy manager, the VM scheduler
and the storage master.

- Resource subsystem - provides primitives for locally managing the resources
(distributed operations) , offering different services over the same resources:
the execution Cloud and the storage Cloud.



Cloud@Home on Top of RESERVOIR 49

The two subsystems are strictly interconnected : the management subsystem im
plements the upper layer of the functional architecture, while the resource sub
system implements the lower level functionalities.

The infrastructure frontend provides tools for Cloud@Home-service provider
interactions, forwarding the incoming requests to the lower level blocks. The
Cloud broker collects and manages information about the available Clouds and
the services they provide (both functional and non-functional parameters, such
as QoS, costs, reliability, request formats ' specifications for Cloud@Home-foreign
Clouds translations, etc). The policy manager provides and implements the
Cloud's access facilities. This task falls into the security scope of identification,
authentication, permission and identity management .

The resource engine is the hearth of Cloud@Home. It is responsible for the
resources' management , the equivalent of a Grid resource broker in a broader
Cloud environment. To meet this goal, the resource engine applies a hierarchical
policy. It operates at higher level, in a centralized way, indexing all the resources
of the Cloud. Incoming requests are delegated to VM schedulers or storage mas
ters that, in a distributed fashion, manage the computing or storage resources
respectively, coordinated by the resource engine. In order to manage QoS poli
cies and to perform the resources discovery, the resource engine collaborates with
both the Cloud broker and the policy manager at higher level, locally monitored
and managed by schedulers and masters through the hosts' resource monitors.

The VM provider, the resource monitor and the hypervisor are responsible
for managing a VM locally to a physical resource of an execution Cloud.

Chunk providers physically store the data into a storage Cloud, that are en
crypted in order to achieve the confidentiality goal.

3 RESERVOIR vs. Cloud@Home

In order to adapt the Cloud@Home architecture to the RESERVOIR one, it is
necessary to in depth investigate the two architectures, individuating points in
common and differences. Let's start with the points in common. The first regards
the architecture. Both RESERVOIR and Cloud@Home specify layered architec
tures decomposed in three levels, but the decomposition approach applied in
the two contexts differs. In RESERVOIR the decomposition resulting in Fig. 1
is made on implementative issues. Specifically, in the RESERVOIR architecture
there is a correspondence between layers and physical nodes implementing them .
In Cloud@Home, the layered model of Fig. 3 describes a more abstract functional
characterization, whose implementation, detailed in Fig. 4, does not establishes
a direct 1:1 correspondence between functions, blocks and physical nodes. In
order to implement Cloud@Home starting from the RESERVOIR architecture
it is necessary to adapt the former architecture to the latter, and so to establish
the correspondence between layers and blocks to physical nodes.

Another important point in common to both projects are the federation and
the interoperability goals. Both projects share these goals providing different
architectural solutions: RESERVOIR implements Cloud federations by provid
ing vertical interoperability to service providers through a standardized SMI



50 V.D. Cunsolo, S. Distefano, and A. Puliafito

interface, and limiting the horizontal interoperability to one layer of the stack,
the VEEM, achieving VEEM-to-VEEM communication through VMI. Due to
the choiceof defining a logical-functional architecture, Cloud@Home unifiesboth
vertical and horizontal interoperability into a unique block specifically conceived
and devoted to interoperability and federation tasks: the Cloud broker.

As in RESERVOIR, we believe that the best solution to achieve interoperabil
ity among different Clouds is the standardization way, opinion validated by sev
eral significant initiatives and efforts towards Cloud standardizations [20,26,21].
It is needed a clear, unambiguous and widely accepted standard allowing au
tomatic Cloud discovery and communications setup. But , since at now Cloud
infrastructures are mainly commercial, the question wether the involved corpo
rations will accept to conform to a standard is an open problem not so obvious.
So we think it could be necessary to provide means for bridging or translating
between different interfaces in order to reach the interoperability goal in Cloud.
The Cloud broker accomplishes this task with regard to Cloud@Home.

With regard to interoperability, another important problem to face is the
Cloud discovery : how a Cloud knows about the existence of other Clouds and
the services they provide? While RESERVOIR not so clearly identifies such topic
problem, Cloud@Home deals with the Cloud discovery by delegating such task
to the Cloud broker. Both centralized and distributed solutions are possible for
addressing the Cloud discovery task , but we retain to follow a trade-off between
the two approaches in order to take advantage from both [23] .

A significant difference between RESERVOIR and Cloud@Home regards re
source management . RESERVOIR concentrates all the resource management
functions into the VEEM. This centralized solution allows to simplify the re
source management but , on the other hand , it cannot easily manage great quan
tities of hosts (VEEH) implementing the Cloud infrastructure, since a unique
manager does not scale when the number of hosts increases. Cloud@Home in
stead proposes a hierarchical approach, by which the resource management is
coordinated at high level by a resource engine, and implemented at lower level
by schedulers or masters that could be also hierarchical. This solution allows
to reduce the workload incoming to the resource engine moving it toward the
VM schedulers. A distributed-hierarchical approach is further motivated by the
fact that the context in which Cloud@Home operates includes volunteer contri
butions . Such environment is highly dynamic, since resources can be "plugged"
in or out the infrastructure autonomously, therefore the system must be able to
manage such dynamics, quickly adapting to variations. For this reason to ad
dress the problem we think about autonomic approaches [23], able to quickly
reconfigure after changes occur.

With regard to SLA and QoS issues, RESERVOIR splits the task of SLA in
two parts: the vertical SLA towards Service Provider is managed by the Service
Manager; the horizontal SLA among VEEM of different infrastructures due to
the dynamic federation of infrastructure providers. The functional architecture
of Cloud@Home individuates a specific block to which assign QoS and SLA chal
lenges, the policy manager. In combination with the resource engine, the policy



Cloud@Home on Top of RESERVOIR 51

manager manages the vertical SLA with service providers, locally monitoring
the resources through a resource monitor active for each host. The resource in
formation are kept locally to the corresponding VM scheduler or storage master,
accessed by the resource engine in the SLA discovery and checking/monitoring
phases. The policy manager also provides tools for the horizontal SLA. In such
case the SLA process is managed in combination with the Cloud broker that
performs the Cloud discovery.

An important topic to adequately take into the right consideration is security,
particularly felt in high dynamic and interoperable-distributed environments. Se
curity issues are only partially covered into RESERVOIR, mainly delegated to
underlying technologies such as virtualization isolation and OpenNEbula secu
rity. Cloud@Homefaces several security issues in its architecture. Authentication
is implemented through PKI infrastructure and X509 certificates , and it is man
aged by the policy manager . Starting from the Grid experience, credential del
egation and Single Sign-On (SSO) mechanisms can be used in order to manage
the identity into a Cloud. The problem of identity management in Cloud@Home
is further complicated by the interoperability goal, since it is necessary that
interoperable Clouds must mutually trust each other. Also in such case it is
strongly recommended to specify and use widely accepted standards in the topic
of authentication and identity management.

In the context thus individuated, we think it is necessary to build up an
identity provider which provides tools and mechanisms for univocal/single-users
and mutual-Clouds authentications. In order to implement such identity provider
we think about a distributed technique as the eXtensible Resource Identifier
(XRI) [27] and the OpenID [28] approaches .

Information security in Cloud@Home is achieved through encryption tech
niques [29]. The information stored in a Cloud@Home infrastructure are always
encrypted, while information in clear are transferred through a secure channel
such as SSH, TSL, IPSEC, SSL, XMPP , etc.

4 Synthesis: Implementing Cloud@Home on Top of
RESERVOIR

The differences between RESERVOIR and Cloud@Homedetailed in the previous
section highlight that, in the corresponding architectures, there are parts in
common and parts riper or better covered in one of them rather then in the
other. This motivates our efforts in combining the two approaches into a Cloud
architecture resulting as a trade-off between the existing ones.

From the above considerations we can observe that the main difference be
tween the two approaches is that Cloud@Home adopts a higher abstraction
level than RESERVOIR in the architecture specification. This impression is val
idated by the two architecture's implementations: RESERVOIR better focuses
on low level aspects such as virtualization and centralized resource management,
while Cloud@Home privileges higher level aspects mainly concerning the man
agement of distributed resources, SLA and QoS, security and interoperability,



52 V.D. Cunsolo, S. Distefano, and A. Puliafito

maybe not yet well focused into RESERVOIR. Moreover, since the context of
Cloud@Home, also including the volunteer cont ribution, can be wider than the
RESERVOIR one, and also due to the experience and the knowhow reached by
this latter project , we retain really practicable and feasible the idea of building
a Cloud@Home architecture starting from the RESERVOIR one.

'C
c:
Q)

'Eeu..
Cloud BrokerPolicyManager

C@H Infrastructure Frontend
e.l!! Resource
~ En ine

.Q ~::ii
:;, 1-' ------- V-SLA (/) =-- - - - - - - - ---;.. ---'

CI) ""'~?;._--------_- r .- - , ,- - - - - - -(/) - - - -- - -
e I S' S . ICll I Ite ervlce Manager I
~ I I

~
e
~

Fig. 5. Cloud@Home Architecture on top of RESERVOIR

More specifically, according to such interpretation , being RESERVOIR fo
cused on lower level aspects than Cloud@Home, it is reasonable to think about
an implementation of Cloud@Home on top of RESERVOIR. Such idea is for
mally represented into the architecture shown in Fig. 5, where concepts and
parts of both the corresponding architectures are merged and integrated.

From a functional/higher-level perspective, the hierarchical distributed re
sources management , the interoper ability among different Clouds and the high
level security management are drawn from Cloud@Home. With regard to the
resource management , at lower level, each site is organized according to the



Cloud@Home on Top of RESERVOIR 53

RESERVOIR architecture, with a Site Manager that manages a pool of dis
tributed network-connected resources, the Site VEERs, constituting the site. In
order to implement an adaptive and easy-to-scale solution, each site can manage
a limited finite number of resources. Thus, the sites are hierarchically coordi
nated by the specific subsystems of the frontend layer (resource engine, policy
manager and Cloud broker). This solution allows to also manage volunteer con
tributions: each time a new resource is offered to the infrastructure and must be
enrolled into the Cloud, the resource engine has to select a site to which asso
ciate the resource. If no sites are available a new site is built up by aggregating
the resources that are not yet associated to a site with the ones selected from
other different sites, applying load balancing principle in the selection in order
to avoid overloaded sites and resources.

In this new architecture, the SLA and QoS management solution is derived
from both the original architectures: the characterization made in RESERVOIR,
distinguishing between high level, vertical SLA (VSLA) and low level, horizon
tal SLA (RSLA) has been inherited by the new architecture. The high level
VSLA is subdivided into two parts: the former between the service providers
and the frontend , the latter between the frontend layer blocks and each site.
The HSLA has the aim of making adaptive the infrastructure to external solici
tations. Before asking to resource engine and policy manager , the single VEEM
can autonomously try to discover resources when they cannot locally (on-site)
satisfy the requirements, by asking to other VEEM. Otherwise, they recur to re
source engine and policy manager , that must be always updated also in case of
lower level reconfigurations. Such goal can be pursued by exploiting autonomic
computing techniques.

Let's jump into details. Followinga top-down approach, the service providers
interact with the Cloud@Home infrastructure frontend through a specific in
frastructure frontend interface (IFI) that forwards their service manifests to the
lower level blocks. The information specified in the service manifests are trans
lated into the local Cloud format by the Cloud@Home infrastructure frontend
and therefore forwarded to the lower level blocks, as done in Cloud@Rome. Thus
the resource engine, in collaboration with the policy manager and, if required,
with the Cloud broker, perform the VSLA with the service provider. This task
requires the interposition of the infrastructure frontend, from one side, and of
the site through the specific SMI interface from the other side.

Through the frontend, we can also adapt the SLA to interact (by the policy
manager and the resource engine) with the VM Scheduler, which includes two
RESERVOIR components: the Site Service Manager and the Site VEE Manager.
According to the Cloud@Home architecture, the VM Scheduler uses and inter
acts with the VM Provider. To integrate this behavior within RESERVOIR, we
can place the VM provider inside a Site VEER, allowing the resource monitor
to directly interact with VM scheduler.

Such requests are managed on-site by the site service manager, that negotiates
the site SLA interacting with the lower VEEM layer, which manages the site
resources and therefore monitors their status. Both such components implement



54 V.D. Cunsolo, S. Distefano, and A. Puliafito

the functions associated to the original Cloud @HomeVM scheduler and therefore
in Fig. 5 are encapsulated in this latter component.

A Cloud@Home site is also composed of a pool of VEEH physical nodes. Each
VEEH contains a Cloud@Home VM provider and a VM resource monitor, and
obviously has its own hypervisor and host as, such as the one typically used in
RESERVOIR (XEN, KVM hypervisors and Linux OS). A goal of Cloud@Home
is to implement a cross-platform interface independent of hypervisor and host
as. This is a mandatory requirement in case Clouds interoperability is needed.
Since this is not satisfied by the RESERVOIR architecture, we need to extend
the RESERVOIR infrastructure in order to support other hypervisors. The best
solution is the specification of a unique , standard VM format [26]. Another
requirement is that the hypervisors have to be interoperable, independent of
the host as. Our idea to overcome this latter specific as constraints, waiting
for a standard VM format , is to include the support of VirtualBox [30] in the
architecture.

5 Conclusions

Cloud computing provides on-demand service provision, QoS guaranteed offer,
and autonomous system for managing hardware, software and data transpar
ently to users. To such context, Cloud@Home adds the possibility of enrolling
volunteer contributing resources merging aims and scopes of both Cloud and
Volunteer computing paradigms. In order to implement Cloud@Home, instead
of starting from scratch, we decided to exploit the existing work produced by the
RESERVOIR project which is building a Cloud computing framework without
barrier in a federated way for implementing large data center.

In this paper we propose how to merge the two approaches to introduce flexi
bility in RESERVOIR, improving SLA management and federation issues better
covered in Cloud@Home. Moreover, the volunteer contribution feature allows to
extend RESERVOIR Clouds with new available resources from academic, open
communities and commercial organizations. On the other hand , Cloud@Home
benefits from RESERVOIR, exploiting its riper infrastructure in terms of virtu
alization and site resources management.

References

1. Foster, I.: What is the grid? - a three point checklist. GRIDtoday 1(6) (July 2002)
2. Milenkovic, M., Robinson, S., Knauerhase,R., Barkai, D., Garg, S., Tewari, A., An

derson, T., Bowman, M.: Toward internet distributed computing. Computer 36(5) ,
38-46 (2003)

3. Ross, J .W., Westerman, G.: Preparing for utility computing: The role of it archi
tecture and relationship management. IBM System Journal 43(1), 5-19 (2004)

4. Kephart, J .G., Chess, D.M.: The vision of autonomic computing. Computer 36(1) ,
41-50 (2003)



Cloud@Home on Top of RESERVOIR 55

5. Davis, A., Parikh , J ., Weihl, W.E.: Edgecomput ing: extending ente rprise applica
t ions to the edge of the internet. In: WWW Alt . 2004: Proceedings of th e 13th
international World Wide Web conference on Alternate track papers & posters,
pp . 180-18 7. ACM, New York (2004)

6. Murugesan, S.: Harnessing green it : Principles and pract ices. IT Professional 10(1),
24- 33 (2008)

7. Pearson, S.: Trusted Computing Platforms: TC PA Technology in Context . Prentice
Hall PTR, Upper Saddle River (2002)

8. Wang, L., Tao, J ., Kunze, M., Cast ellanos, A.C., Kramer, D., Karl , W.: Scientific
Cloud Computing: Early Definition and Experience. In: HPCC 2008, pp . 825-830.
IEEE Compu ter Society, Los Alamitos (2008)

9. Amazon Inc.: Elasti c Compu te Cloud [URL]. Amazon (2008),
http ://aws .amazon .com/ec2

10. IBM Inc.: Blue Cloud project. IBM (2008),
http ://www-03 .ibm .com/press/us/en/pressrelease/22613 .wss/

11. Sun Microsystem.: Network.com (SUN), http ://www.network .com
12. Co., M.: (Azure services platform) ,

http ://www.microsoft .com/azure/default .mspx
13. Inc., G.: (Google applicat ion engine),

http ://code .google .com/intl/it-IT/appengine/
14. Dell: (Dell cloud comput ing solut ions) ,

http ://www.dell.com/cloudcomputing
15. RESERVOIR Consort ium: RESERVOIR Proj ect (2009),

http : //www-03.ibm .com/press/us/en/pressrelease/23448 .wss/
16. University of Chicago-University of Florida-Purdue University-Masaryk Univer

sity : Nimbus-Stratus-Wispy-Kup a Projects (January 2009),
http ://workspace.globus .org/clouds/nimbus.html/ ,
http ://www.acis .ufl .edu/vws/ .
http ://www.rcac .purdue .edu/teragrid/resources/#wispy ,
http ://meta .cesnet.cz/cms/opencms/en/docs/clouds

17. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman , S., Youseff, L.,
Zagorodnov, D.: The Eucalyptu s Open-source Cloud-computing System. Univer
sity of California Santa Barbara Computer Science (2009),
http ://open .eucalyptus .com/

18. OpenQRM: Open Source Data Management P latform (2009),
http ://www.openqrm .com/

19. Dist ribu ted Systems Architecture Research Group : Openl\'Ebul a Project Univer
sidad Complutense de Madrid (2009), http ://www.opennebula .org/

20. Open Cloud Manifesto Organization : Th e Open Cloud Manifesto (Spring 2009),
http ://www.opencloudmanifesto .org/

21. Distributed Management Task Force, Inc.: Open Cloud Standards Incubat or
(2009), http ://www.dmtf.org/about/cloud-incubator

22. Anderson, D.P., Fedak, G.: Th e computational and storage potential of volunteer
computing. In: CCGRID 2006, Washington, DC, USA, pp. 73-80 . IEEE Computer
Society, Los Alamitos (2006)

23. Cunsolo, V.D., Distefano, S., Puliafito, A., Scarp a, M.: Volunteer Comput ing and
Desktop Cloud: t he Cloud@Home Paradigm. In: Proceedings of the 8th IEEE Int er
national Symposium on Network Comput ing and Applicat ions (IEEE NCA 2009),
July 9-11. IEEE, Los Alamitos (2009)

24. Anderson, C.: The Long Tail: How Endless Choice Is Creating Unlimited Demand .
Random House Business Books (2006)



56 V.D. Cunsolo, S. Distefano, and A. Puliafito

25. Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I.M., Mon
tero, R., \Volfsthal, Y., Elmroth, E., Caceres, J ., Ben-Yehuda, M., Emmerich, W.,
Galan , F.: The reservoir model and architecture for open federated cloud comput
ing. IBM Journ al of Research and Development 53(4) (2009)

26. VMWare Inc., XEN Inc.: The Open Virtu al Machine Format Whitepaper for OVF
Specification (2007), http ://www.vmware .com/appliances/learn/ovf . html

27. OASIS Extensible Resource Identifier (XRI) TC : Extensible Resource Identifier
(XRI) (2009),
http ://www.oasis-open .org/committees/tc_home .php?wg_abbrev=xri

28. Reed, D., Chasen, L., Tan, W.: OpenID identit y discovery with XRI and XRDS.
In: IDtrust 2008: Proceedings of the 7th symposium on Identity and tru st on the
Internet , pp. 19-25. ACM, New York (2008)

29. Cunsolo, V.D., Distefano, S., Puliafito, A., Scarpa, M.: Implementing Data Secu
rity in Grid Environment . In: Proceedings of the IEEE Workshop on Emerging
Technologies for Next Generation GRID (IEEE ET NGRID 2009), Jun e 9 - July
11. IEEE , Los Alamitos (2009)

30. Sun Microsystems Inc.: VirtualBox (2009), http ://www.virtualbox .org/



AppScale: Scalable and Open AppEngine
Application Development and Deployment

Navraj Chohan, Chris Bunch, Sydney Pang, Chandra Krintz,
Nagy Mostafa, Sunil Soman, and Rich Wolski

Computer Science Department
University of California, Santa Barbara

Abstract. We present the design and implementation of AppScale, an
open source extension to the Google AppEngine (GAE) Platform-as
a-Service (PaaS) cloud technology. Our extensions build upon the GAE
SDK to facilitate distributed execution of GAE applications overvirtual
ized cluster resources, including Infrastructure-as-a-Service (IaaS) cloud
systems such as Amazon's AWS/EC2 and EUCALYPTUS. AppScale pro
vides a framework with which researchers can investigate the interaction
betweenPaaS and IaaS systems as well as the inner workings of, and new
technologies for, PaaS cloud technologies using real GAE applications.

Keywords: Cloud Computing, PaaS, Open-Source, Fault Tolerance,
Utility Computing, Distributed Systems.

1 Introduction

Cloud Computing is a term coined for a recent trend toward service-oriented
cluster computing based on Service-Level Agreements (SLAs). Cloud comput
ing simplifies the use of large-scale distributed systems through transparent and
adaptive resource management. It provides simplification and automation for
the configuration and deployment of an entire software stack. Moreover, cloud
technology enables arbitrary users to employ potentially vast numbers of multi
core cluster resources that are not necessarily owned, managed, or controlled by
the users themselves. Specific cloud offerings differ, but extant infrastructures
share two common characteristics: they rely on operating system virtualization
(e.g., Xen, VMWare, et c.) for functionality and/or performance isolation and
they support per-user or per-application customization via a service interface
typically implemented using high-level language technologies, APIs, and web
services.

The three prevailing classes of cloud computing are Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS).
SaaS describes systems in which high-level functionality (e.g., SalesForce.com
[24], which provides customer relationship management software as an on
demand service) is hosted by the cloud and exported to thin clients via the
network. The main feature of SaaS systems is that the API offered to the cloud
client is for a complete software service and not programming abstractions or

D.R. Avresky et aI. (Eds.) : C loudcom p 2009 , LNICST 34, pp. 57-70 , 2010 .
© Institute for Computer Sciences, Soci al-Informatics and Telecommunications Engineering 2010



58 N. Chohan et al.

resources. Commercial SaaS systems typically charge according to the number
of users and application features.

PaaS refers to the availability of scalable abstractions through an interface
from which restricted (e.g., HTTP(s)-onlycommunication, limited resource con
sumption), network-accessible, applications written in high-level languages (e.g.
Python, JavaScript, JVM and .Net languages) can be constructed. Two popular
examples of PaaS systems are Google App Engine (GAE) [13] and Microsoft
Azure [3]. Users typically test and debug their applications locally using a non
scalable development kit and then upload their programs to a proprietary, highly
scalable PaaS cloud infrastructure (runtime services, database, distribution and
scheduling system, etc.). Commercial offerings for both PaaS and IaaS systems
charge a low pay-as-you-go price that is directly proportional to resource use
(CPU, network bandwidth, and storage); these providers typically also offer trial
or capped resource use options, free of charge.

IaaS describes a facility for provisioning virtualized operating system in
stances, storage abstractions, and network capacity under contract from a service
provider. Clients fully configure and control their instances as root via ssh. The
Amazon Web Services (AWS) which includes the Elastic Compute Cloud (EC2),
Simple Storage System (S3), Elastic Block Store (EBS) and other APls [1] is, at
present, the most popular example of an IaaS-style computational cloud. Amazon
charges per instance occupancy hour and for storage options at very competitive
rates. Similar to those for PaaS systems , these rates are typically significantly
less than the cost of owning and maintaining even a small subset of the resources
that these commercial entities make available to users for application execution .

EUCALYPTUS [20] is an open-source IaaS system that implements the AWS
interface. EUCALYPTUS is compatible with AWS to the extent that commercial
tools designed to work with EC2 (e.g., Rightscale [22], Elastra [11], etc.) cannot
differentiate between an Amazon and a EUCALYPTUS installation. EUCALYPTUS
allows researchers to deploy, on their own cluster resources, an open-source web
service-based software infrastructure that presents a faithful reproduction of
the AWS functionality in its default configuration . Furthermore, EUCALYPTUS
provides a research framework for investigation of IaaS cloud technologies.

Such a framework is key to advancing the state of the art in scalable cloud com
puting software architectures and to enabling users to employ cloud technologies
easily on their own local clusters . Yet, despite the popularity and wide-spread
use of PaaS systems, there are no open-source implementations of PaaS systems
or APls . To address this need, we have designed and implemented an open
source PaaS cloud research framework, called AppScale. AppScale emulates the
functionality of the popular GAE commercial cloud. Specifically, AppScale im
plements the Google App Engine open APls and provides an infrastructure and
toolset for distributed execution of GAE applications over virtualized clusters
and IaaS systems (including EC2 and EUCALYPTUS). Moreover, by building on
existing cloud and web-service technologies, AppScale is easy to use and able to
execute real GAE applications using local and private cluster resources.



AppScale: Scalable and Open AppEngine Application Development 59

AppScale consists of multiple components that automate deployment, man
agement, scaling, and fault tolerance of a GAE system. AppScale integrates,
builds upon, and extends existing web service, high-level language, and cloud
technologies to provide a system that researchers and developers can employ to
investigate new cloud technologies or the behavior and performance of extant
applications. Moreover, AppScale deployment requires no modifications to GAE
applications. AppScale is not meant to compete with, outperform, or scale as well
as, proprietary cloud systems, including GAB. Our intent is to provide a frame
work that enables researchers to investigate how such cloud systems operate,
behave, and scale using real applications. Moreover, by facilitating application
execution over important, lower-level cloud offerings such as EUCALYPTUS and
EC2, AppScale also enables investigation of the interoperation and behavior of
multiple cloud fabrics (PaaS and IaaS) in a single system. In the sections that
follow, we describe the design, implementation, and a preliminary evaluation of
AppScale.

2 Google App Engine

In April 2008, Google released a software framework for developing and hosting
complete web service applications. This framework, called Google App Engine
(GAE) , enables users to write applications written in high-level programming
languages and to deploy them on Google's proprietary and vast computing re
sources. The framework restricts the libraries that the application can use and
limits the resources consumed by the program . This sandbox execution model
limits application functionality in order to protect system stability, guarantee
performance, and achieve scalability. The restrictions include communication
limited to HTTP(S) , program response to web requests within 30 seconds, no
file system access except for files uploaded with the application, and persistent
storage via simple in-memory or distributed key-value storage across requests .

Deployed GAE applications gain access to a high-quality, professionally main
tained, and extremely scalable software infrastructure. This infrastructure is
closed proprietary and includes the Google File System (GFS) [12], BigTable [8],
MapReduce [9], Chubby [5] and Paxos [7] . GFS is a distributed, scalable, and
reliable file system optimized for very large files and throughput-oriented appli
cations . BigTable offers a distributed and highly available schema-free key-value
store for fast access to structured data via a simple Datastore API. BigTable
also integrates MapReduce for highly scalable concurrent execution of embarass
ingly parallel computations, such as data indexing and crunching for Google
PageRank [4], Google Earth, and other applications. Chubby is a highly avail
able naming service for GFS (that was originally designed as a locking service);
the content of GFS are agreed upon using an optimized version of the original
Paxos algorithm [15] .

Google applications access these services through well-defined interfaces en
abling the cloud to manage and controll resource usage very efficiently and seal
ably. GAE applications interoperate with other hosts via HTTP(S) using the



60 N. Chohan et al.

URL-Fetch API , manipulate images via the Images API, cache and store data
via t he Memcache and Datastore API , and access other Google applicat ions via
the Mail API and Accounts API. The web frontend of an application commu
nicates via Remote Procedure Calls (RPC) with the datastore backend using
protocol buffers [21] for fast and portable data serialization .

GAE developers write their web applicat ions (webpage frontend, response
computation, and dat a access) in Python using the GAE APIs, a subset of the
Python libraries appr oved by Google, and the Django web framework [10] (or
other similar and approved Python web framework). These frameworks signif
icantly simplify and expedite common web development act ivities. Developers
modify the data model in their programs to access the GAE Datastore API.
In April 2009, Google made available a Java-based GAE framework. Develop
ers employ the Java Servlet and Data Objects APIs and a subset of the Java
libraries approved by Google to implement JVM-based GAE web applicat ions.

Developers write a runtime configuration file for their applicat ion that iden
tifies the program, specifies the versioning information, and identifies the han
dlers (code to execute or files to serve) for different URL accesses. Developers
use a GAE software development kit (SDK) to test and execute their applica
tion locally and serially. The SDK implements the APIs using simple, slow, and
non-scalable versions of the internal services. In particular , the SDK implements
the Dat astor e API via a flat file (or very simple database). Once developers are
ready to deploy their application on Coogle's resources, they do so by uploading
a gzipped tar-ball of the code and configurat ion file to App Engine using an SDK
tool. The developer also specifies and builds the indexes on the dat astore for all
queries that the application code can make, as part of the upload process.

The Google runtime system auto mat ically load-balances the application ac
cording to user load. If the applicat ion exceeds its billable or fixed resource quota
within a 24-hour period or l-m inute interval, the system retu rns a HTTP 403
Forbidden stat us until the resource is replenished. Applicat ion act ivities that
are monitored by the Google system include CPU usage, network communi
cat ion (bandwidth), requests (tota l and per minute), data storage, and emails
sent .

In summary, Google App Engine provides access to vast and ext reme scale
resources for a very specific and well-defined web service applicat ion domain.
Applications can be implemented and deployed into the clould quickly and easily
using high-level languages, simple and welldocumented API's, and Google's SDK
tools. Furthermore, the Google platform monitors and scales the applications.
GAE thus enables a broad user base to develop web applications and deploy them
without owning and managing sufficient cluster resources. The GAE APIs and
the SDK carry open-source licenses but the internal, scalable, implementations
are closed-source.

3 AppScale

To provide a platform for GAE applicat ion execut ion using local and private
cluster resources, to investigate novel cloud services, and to faciliate research for



AppScale: Scalable and Open AppEngine Application Development 61

GAEApp
Developer

(App5ca1e Admin) )

I

I,?: l'~·· · · ··
~

_AppSca e Tools

AppContro er (AC)

~ •.. .•.~ HTTPS

Fig . 1. Overview of the AppScale design. The AppScale cloud consists of an Appl.oad
Balancer (ALB), a Database Master (DBM), one or more Database Slaves (DBS), and
one or more AppServers (ASs) . Users of GAE applications interact with ASs; the de
veloper deploys AppScale and her GAE applications through the head node (i.e. the
node on which the ALB is located) using the AppScale Tools. AppControllers (ACs)
on each node interact with the other nodes in the system; ASs interact with the DBM
via HTTPS.

the next-generation of cloud software and applications, we have implemented
AppScale. AppScale is a multi-language, multi-component framework for exe
cut ing GAE applicat ions. Figure 1 overviews the AppScale design.

AppScale consists of a too lset (the AppScale Tools), three primary compo
nents, the AppServer (ASs), t he database management system , and the Ap
pLoadBalancer (ALB), and an AppController (AC) for inter-component
communication. AppServers are the execut ion engines for GAE applicat ions
which interact with a Database Master (DBM) via HTTPS for data storage and
access. Database Slaves (DBSs) facilitate dist ributed, scalable, and fault tolerant
data management . The AppController is responsible for setup, init ializat ion, and
tear down of AppScale instances, as well as cross component interaction. In ad
dit ion, the AppContro ller facilitates deployment of and aut hentication for GAE
applicat ions. The ALB serves as the head node of an AppScale deployment and
initiat es connections to GAE applicat ions running in ASs. The AC of the head
node also monitors and manages the resource use and availability of the deploy
ment . All communications across the syste m are encrypted via the secure socket
layer (88L).

A GAE application developer interacts with an App8cale instance (cloud) re
motely using the App8cale Tools. Developers use these tools to deploy App8cale ,
to submit GAE applicat ions to deployed AppScale instances, and to interact
with and administer AppScale instances and deployed GAE applicat ions. We
dist inguish developers from users; users are the clients/users of individu al GAE
applicat ions.

An AppScale deployment consists of one or more virt ualized operating system
instances (guest VMs). GuestVMs are Linux systems (nodes) th at execute over
the Xen virt ual machine monito r, t he Kernel Virtu al Machine (KVM) [25] or
IaaS systems such as Amazon's EC2 and EUCALYP TUS. For each AppScale de
ployment , there is a single AppLoadBalancer (ALB) which we consider the head



62 N. Chohan et al.

node, one or more AppServers (AS), one Database Master (DBM) and one or
more Database Slaves (DBSs). A node can implement any individual component
as well as any combination of these components ; the AppScale configurat ion can
be specified by the developer via command line options of an AppScale tool.

We next detail the implementation of each of these components . To facilitate
this implementation we employ and extend a number of exist ing, successful, web
service technologies and language frameworks .

3.1 AppController (Ae)

The AppController (AC) is a SOAP client / server daemon written in Ruby. The
AC executes on every node and starts automat ically when the guestVM boots .
The AC on the head node starts the ALB first and initiates deployment and boot
of any other guestVM. This AC then contacts the ACs on the other guestVMs
and spawns the components on each node. The head node AC first spawns the
DBM (which then starts the DBSs) and then spawns t he AppServers , configuring
each with the IP of the DBM (to enable access to the database via HTTPS) .

The AC on the head node also monitors the AppScale deployment for failed
nodes and for opportunities to grow and shrink the AppScale deployment ac
cording to system demand and developer preferences. Th e AC periodically polls
(currently every 10 seconds) the AC of every other node for a "heartbeat" and to
collect per-application behavior and resource use (e.g. CPU and memory load).
When a component fails, the AC restarts the component , respawning a node if
necessary.

Although in this paper we evaluat e the stat ic default deployment of AppScale,
we can also use this feedback mechanism to spawn and kill individual nodes of a
deployment to respond to system load and performance. Killing nodes reduces
resource consumption (and cost of resources are being paid for) and consists
of stopping the components within a node and dest roying the guestVM. We
spawn nodes to add more AppServers or Database Slaves to the system. We are
currently invest igati ng various scheduling policies, feedback mechanisms, and
capability to inter act with the underlying cloud fabric to modify service level
agreements. AppScale currently supports starting and stopping of any compo
nent in a node and automatic spawning and destroying nodes.

3.2 AppLoadBalancer (ALB )

The AppLoadBalancer is a Ruby on Rails [23] applicat ion that employs a simple
HTTP server (nginx [19]) to select between three replicated Mongrel application
servers [16] (for head-node load balancing). The ALB distr ibutes initial requests
from users to the AppServers (ASs) of GAE applications. Users initially contact
the ALB to request a login to a GAE application. The ALB provides and/or
authenticates this login and t hen selects an AS randomly. It then redirects the
user request to the selected AS. The user, once redirected, continues to use the
AppServer to which she was routed and does not interact further with the ALB
unless she logs out or the AppServer she is using becomes unreachable.



AppScale: Scalable and Open AppEngine Application Development 63

3.3 AppServer (AS)

An AppServer is an extension to the development server distributed freely as part
of the Google AppEngine SDK for GAE application execution. Our extensions
to the development server enable fully automated execution of GAE applications
on any virtualized cluster to which the developer has access, including EC2 and
EUCALYPTUS. AppServers can also be used without virtualization which requires
manual configuration. In addition , our extensions provide a generic datastore in
terface through which any database technology can be used. Currently we have
implemented this interface to RBase and Rypertable, open-source implementa
tions of Google's BigTable that execute over the distributed Radoop File System
(RDFS) [14]. We also have plugins for MySQL [17], Cassandra [6], and Volde
mort [26].

We intercept the protocol buffer requests from the application and route them
over RTTPS to/from the DBM front-end called the PBServer. The PBServer
implements the interface to every datastore available and routes the requests to
the appropriate datastore. The interaction is simple but fully supported by a
number of different error conditions, and includes:

- Put: add a new item into the table (create table if non-existant)
- Get: retrieve an item by ID number
- Query: SQL-like query
- Delete: delete an item by ID number

Our other extensions facilitate automatic invocation of ASs and authentica
tion of GAE users. The AC of the node sets the location of the datastore (passed
in from a request from the head node AC), upon AS start. The AS also stores
and verifies the cookie secret that we use to authenticate users and direct the
component to authenticate using the local AppController (AC).

An AS executes a single GAE application at time. To host multiple GAE
applications , AppScale uses additional ASs (one or more per GAE application)
that it isolates within their own AppScale nodes or that it co-locates within
other nodes containing other AppScale components.

3.4 Data Management

In front of the Database Master (DBM) sits the The PBServer is the front-end of
the DBM. This Python program processes protocol buffers from a GAE applica
tion and makes requests on its behalf to read and write data to the datastore. As
mentioned previously, AppScale currently supports RBase and Rypertable data
stores . Both execute over RDFS within AppScale which performs replication ,
fault tolerance, and provides reliable service using distributed Database Slaves.
The PBServer interfaces with RBase, Rypertable, Cassandra, and Voldemort
using Thrift for cross-language interoperation.

The AC on the DBM node provides access to the datastore via these interfaces
to the other ACs and the ALB of an AppScale system. The ALB stores uploaded
GAE applications as well as user credentials in the database to authenticate the
developer and users of GAE applications.



64 N. Chohan et al.

3.5 AppScale Tools

The developer employs the AppScale tools to setup an AppScale insta nce and to
deploy CAE application s over AppScale. The toolset consists of a small number
of Ruby scripts that we named in the spirit of Amazon's EC2 tools for AWS.
The tools facilit ate AppScale deployment on Xen-based clusters as well as EC2
and EUCALYPTUS. The latter two systems require credent ials and service-level
agreements (SLAs) for the use, allocat ion (killing and spawning of inst ances) of
resources on behalf of a developer; the EC2 tools (for either IaaS system) gener
ate , manage, distribute (to deployed inst ances), and authenticate the credentials
throughout the cluster. The AppScale tools sit above these commands and make
use of them for credential management in IaaS settings. In a Xen-only sett ing, no
credential management is necessary; the tools employ ssh keys for cluster man
agement . The tools enable developers to start an AppScale system, to deploy and
tear down CAE applications, to query t he state and performance of an AppScale
deployment or application , and to manipu late the AppScale configuration and
sta te . There is currently no limit on the number of uploaded applicat ions.

3.6 Tolerating Failures

There are multiple ways in which AppScale is fault to lerant . The AppController
executes on all nodes. If the AC fails on a node with an AS, that AS can no longer
authenticate users for a particular CAE application but aut henticated users
proceed unimpeded. Users that contact an ALB to re-authenticat e (acquire a
cookie) are redirected to a node with a funct ioning AS/ AC to cont inue accessing
the applicat ion. If the AC fails on t he node with the ALB, no new users can reach
any CAE applicat ions deployed in the AppScale instance and the developer
is not able to upload addit ional CAE applicat ions; extant users however, are
unaffected. This scenario (AC on the ALB node failure) is similar to AC failure
on the DBM node. In this scenario (AC on the DBM node failure), ASs and
users are unaffected.

The database system continues to funct ion as long as at least one DBS is
available. Similarly, t he system is tolerant to failure of the PBServer (DBM front
end). If the PBServer fails on the DBM, t he ASs will temporarily be unable to
reach the database until the AC on the node restarts the PBServer. The ASs
are not able to cont inue to execute (CAE applications will fail) if the DBM goes
down or becomes unreachable. In this scenario , the ALB will restart the DBM
component but unless the data from the original DBM is available to restore,
the restart is similar to restarting AppScale.

Although, coupling multiple components per node reduces the number of nodes
(resource requirements) and potentially better utilizes underlying resources, it
also increases the likelihood of failure. For example, if all components are located
in a single node, node failure equals system failure. If the node containing the ALB
and DBM fails, the system fails. In these scenarios, component failure does not
equal node failure however; the AC in the head node will attempt to restart com
ponents as described previously. The DBM issues 3 replicas of tables for DBSs to



AppScale: Scalable and Open AppEngine Application Development 65

Table 1. Benchmarks Statistics. For each benchmark, Column 2 is its description
and Column 3 is its number of lines of code (Python/JavaScript). Column 4 is the
number of transactions in the Grinder user loop that we use to load the system in our
experiments.

LOC Trans-
Python or actions

Benchmark Description JavaScript in Loop
cccwiki user-defined webpage creation 289/ 10948 74
guestbook presents last 10 signatureson a page; users can sign as well 81/ 0 9
shell an interactive Python shell via a webpage 308/6100 14
tasks to-dolist manipulation 485/ 1248 44

store, thus user dat a is available on failure of any individual DBS component. We
are invest igating the various failure scenarios and techniques for tolerating them
within a deployed AppScale system as part of ongoing and future work.

We distri bute AppScale as a single Linux image and the AppScale Toolset.
The image contains the code for the implementation of all of the components
and a 54-bit Linux kernel and Ubuntu distribution. The system is available from
http ://appscale . cs .ucsb . edu/; all new progr ams that we have contributed
carry the Berkeley Software Distribution (BSD) License.

4 Evaluation

We next present the basic perform ance characterist ics of AppScale default de
ployment . We note that we have not optimized AppScale in any way and that
this st udy presents a baseline from which we will work to improve the perfor
mance and scalability of the system over tim e. Our goal with AppScale to provide
a research framework for the community, t hus, we and others will likely iden
tify ways to improve it s performance over time . We simply provide a framework
with which to investigate exist ing open source GAE applicat ions, services, and
execut ion characteristics using local cluster resources.

4.1 Met hodology

For our exper imental methodology, we invest igate four open source GAE applica
tions made available as Google AppEngine Samples (ht t p : / / code .google . com/
p/google-app-engine-samples/). The applicat ions are Python programs and
Python/ JavaScript programs. We overview them and their basic characteristics
in Tab le 1. The cccwiki and tasks applicat ions require th e user to log in. Each
app licat ion uses the AppScale da tastore for all data man ipulation. We record a
user session that we replay for an increasing number of users repeatedly using
the Grinder load testing framework (ht t p : / / gr i nder . sourceforge .net ) and
its extensions [18].

For each experiment, we investigat e two metrics, (i) the t ota l number of
t ransactions complet ed over a five second int erval, and (ii) t he average



66 N. Chohan et al.

N\.mber 01Transacbons~ed 0'1''' Tme
llOO ..... -

ca;wi1o
IlOO guos1lloo!<- .
700 I! 600

j
500 ~!

15 400
~

I 300
lc:z .
'"200 e
~
-c

100

0
0 20 40 eo eo 100 120 140 '80

r.....I._1

... 
""'"-- -.... .

20000

15000

10000 -e z , :. -

5000

40 60 eo 100 120 140 180
r.....I_1

Fig. 2. Application performance under stress: Transactions over time (left) and average
response time (right) . The x-axisis time in seconds; Grinder introduces three additional
users for load every5 seconds. In the left graph each point is the number of transactions
that completed in that interval, on average across five runs (y-axis). In the right graph,
each point is the average response time across the transactions that began in that
interval, on average across five runs (y-axis).

response t ime for transactions that start during t he int erva l. Specif
ically, each Grinder user repeat edly executes a series of tr ansactions (Table 1
Column 3). The user repeat s this loop for 160 seconds. Grinder adds three users
every five seconds to load th e syste m.

For each five second interval in the 160 seconds of each test , we count the
number of transact ions that complete in th at interval (for t ransactio ns completed
per interval). For average response t ime, for each five second interval of the 160
seconds, we compute the average response t ime for the transact ions that started
in th at interval. We repeat each experiment five times and compute the average
and standard deviation for each interval across all of th e runs.

Our cluste r consists of quad-core 2.66GHz machines with 8GB RAM con
nected via gigabit Ethernet . We employ three of these machines for Grinder
load generators. The machines are synchronized and each Grinder instance in
troduces a single user every five seconds. We specify the number of machines we
use for the AppScale deployment with each experiment below.

4.2 Experimental R esults

We first present data for each appli cation , execut ed in isolation over App
Scale, over time and increasing load. For this experiment , we employ t he de
fault AppScale configuration: one head node (ALB+ DBM) and three slave nodes
(AS+DBS each) with each node/ guestVM on its own machine. Each of the three
Grinder machines accesses the AS of one slave node.

Figure 2 shows the results. The left graph is transact ions over time (higher is
bet ter), t he right graph is average response time (lower is better). Each graph



AppScale: Scalable and Open AppEngine Application Development 67

Number of Transactions Completed overTime
300 ,....--...,....---,----,--.,--...,....----,---.,- -----,

'"c:
.Q
13
~
c:
~
I-

o
Q;
.0
E
~z

250

200

150

100

50

appscale-gueslbook ... €I •
google-gueslbook ~-• . -e.

appscate-shell '. ~- ()
google·shell. " .• •. -

• •... ... . . ... ....
.. -- .. ...

.. .. .:... .~ ~

.. • • . •' - _ . - 0
, ... . 0 . 0 . i

~ ; .· ,O~ 0C~O"~ i !~
.. • :.o~ "0 ' ! ~ ~

• •• • ~ ;. <il I • • '
., .... - ..

· o - ~ I ! '!'
... . . ~ ~ .., III • .• -.. ,
~ - _ . i ' c~ 066 . .
;- ' . c c c Ot c : 6! . - ' .. 0

W 00 100 1 ~ 1~ 1W
Time(seconds)

Fig. 3. Transactions over time under increasing load (3 users per 5 seconds) for two
applications (guestbookand shell), when hosted by Coogle and AppScale

plots a point every five seconds. The x-axis is time and load: Grinder adds three
additional users every 5 seconds. In the left graph each point , is the number of
transactions that completed in that interval, on average across five runs (y-axis).
In the right graph, each point is the average response time across the transactions
that began in that interval, on average across five runs (y-axls).

All of the applications except guestbook tend to grow in the number of transac
tions as load increases. Guestbook's transaction count decreases after 100seconds.
This is because each guestbook posting increases the size ofthe database table. Our
current (naive) implementation of database queries is to return the entire table to
the node so that we can apply any filters at the GAE client side. As the database
grows, each call is more expensive. We are currently extending our query process
to return only the individual entries required, to address this issue. Cccwiki scales
much better because each transaction only modifies an existing page, altering an
entry in the table, as opposed to creating a new entry as guestbook does.

We also evaluated the difference between executing the four guestVMs on
a single (quadcore) machine versus on individual machines. We find that we
achieve very similar results for both for transactions completed and response
time. This is interesting since it shows that the overhead of virtualization and co
location of virtual machines on these systems is not the performance bottleneck
at this point. We find that in some cases the single machine case outperforms
the distributed case due to network communication. This indicates that it may
be beneficial to consider co-location of interoperating AppScale components for
some behaviors and applications.



68 N. Chohan et al.

Finally, we investigate how AppScale performs relat ive to the Coogle propri
etary infrastructur e to bet ter understand our baseline performance. We consider
guestbook and shell applicat ions since neither require the user to log in. We ex
ecute these applications using a Coogle AppEngine account. Figure 3 shows the
results for transact ions completed over time. AppScale transaction counts are
more variable and do not scale for guestbook as load increases. Shell over App
Scale scales up to a time/ load of 80s. Coogle t ransact ion counts scale perfectly.
For response t imes (not shown) for guestboo k Coogle consistent ly responds in
290-330ms regardless of load. For shell, Coogle's response t ime is more variable
but still within a similar range. Shell performs more computation per request
th an guestbook. Coogle therefore starts to deny resources to the application at
150 seconds due to resource consumption limitations.

5 Related Work

The open-source offering most similar to AppScale is AppDrop [2]. AppDrop is
a simple Ruby-on-Rails applicat ion that emulates and hosts AppEngine applica
tions on Amazon's EC2. AppDrop is a proof-of-concept that CAE applications
can be executed in an environment other than that of Coogle.

There are multiple differences between AppScale and AppDrop. First , Ap
pDrop (and any CAE applications that execute using it ) is hosted entirely
using a single guestVM image, which places significant limitations on laaS us
age/accounting, performance, scalability, and fault tolera nce. The AppDrop pro
genitor uses his own EC2 account to host CAE applicat ions on behalf of CAE
developers. Thus, AppDrop is responsible for all EC2 charges and resource use
as well as any "bad behavior" by the GAE applicat ions. Each AppScale inst ance
and its CAE applications is deployed and "owned" by each individual CAE
developer.

AppDrop implements the flat file database integrated in CAE SDK develop
ment server for its datastore. This system is not distr ibuted, scalable, or fault
tolerant. AppDrop also employs a secondary database (implemented using Rails
ActiveRecord and PostG reSQL) to store and retrieve the user's session dat a.
AppScale uses the same distributed and fault tolerant database infrastructure
as it does for its CAE applications and facilitates any database to be "plugged
into" AppScale. AppScale currently integrates HBase, Hypertable, MySQL, Cas
sandra, and Voldemort as distributed, fault tolerant dat astore opt ions.

6 Conclusions

We present AppScale, an open source PaaS cloud computing research frame
work that emulates the Google AppEngine-based cloud offering. AppScale is
easy to use and to extend and automatically deploys itself and GAE applica
tions over Xen-based cluster resources and laaS clouds such as Amazon EC2 and
EUCALYPTUS. AppScale implements a number of different components that fa
cilitate deployment of GAE applications using local (non-propr ietary resources).



AppScale: Scalable and Open AppEngine Application Development 69

Moreover, AppScale provides a framework with which cloud researchers and ap
plication developers can investigat e new techniques (services, tools, schedulers,
optimi zation s), and t he performance and behavior of th ese techniques, and for
real (GAE) applicat ions.

References

1. Amazon Web Services, http : / / avs .amazon . com/
2. AppDrop, http ://jchris .mfdz . com
3. Microsoft Azure Service Platform, http://www .microsoft .com/azure/
4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.

In: Compu ter Networks and ISDN Systems, pp . 107-117 (1998)
5. Burrows, M.: Th e Chubby Lock Service for Loosely-Coupled Distributed Systems.

In: OSOI 2006: Seventh Symposium on Operating System Design and Implemen
tation (2006)

6. Cassandra, http ://incubator .apache .org/cassandra/
7. Chandra , T ., Griesemer, R., Redstone, J .: Paxos Made Live - An Engineering

Perspective. In: POD C 2007: 26th ACM Symposium on Principles of Distributed
Computing (2007)

8. Chang, F. , Dean, J ., Ghemawat , S., Hsieh, W., Wallach, D., Burr ows, M., Chandra,
T., Fikes, A., Gruber, R.: Bigtable: A Distribu ted Storage System for Structured
Dat a. In: Proceedings of 7th Symposium on Operating System Design and Imple
mentation (OSOI), pp . 205-218 (2006)

9. Dean , J ., Ghemawat , S.: MapReduce: Simplified Dat a Processing on Large Clus
ters. In : Proceedings of 6th Symposium on Operating System Design and Imple
mentation (OSOI), pp.137-150 (2004)

10. Django, http://www .djangoproject.com/
11. Elastra Inc., http ://www.elastra .com
12. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System. In: 19th ACM

Symposium on Operating Systems Principles (2003)
13. Google AppEngine, http ://code .google .com/appengine/
14. Hadoop, http ://hadoop .apache .org/core/
15. Lampor t , L.: The Part- Time Parliament . ACM Transactions on Compute r Systems

(1998)
16. Mongrel, http ://mongrel . rubyforge . org
17. MySQL, http ://www.mysql.com
18. Nagpurkar, P., Horn , W., Gopalakrishnan , D., Dubey, N., Jann , J ., Pat tn aik, P.:

Workload characterizat ion of selected jee-based web 2.0 applicat ions. In: Work
load Character izat ion, IISWC 2008. IEEE International Symposium on Workload
Characterization (IISWC) , September 2008, pp . 109-118 (2008)

19. Nginx, http ://www.nginx .net
20. Nurmi, D., Wolski, R., Grzegorczyk, C., Obert elli, G., Soman , S., Youseff, L.,

Zagorodnov, D.: Eucalyptus: A technical report on an elastic utility computi ng
architecture linking your programs to useful systems. DCSB Technical Report ID:
2008-10 (2008)

21. Protocol Buffers. Google's Data Interchange Format ,
http ://code .google .com/p/protobuf



70 N. Chohan et al.

22. Rightscale Inc., http ://ww.rightscale .com/
23. Ruby on Rails, http ://ww.rubyonrails .or g
24. Salesforce Customer Relationships Management (CRM) System,

http ://ww.salesforce .com/
25. I. Sun Microsystems. White paper: Java(TM ) 2 Platform Micro Edition

(J2ME(TM)) Technology for Creating Mobile Devices (May 2000),
http://java .sun .com/products/cldc/wp/KVMwp.pdf

26. Voldemort , http ://project-voldemort .com/



Cloud Computing Infrastructure

Track Session 2





Mitigating Security Threats to Large-Scale
Cross Border Virtualization Infrastructures*

Philippe Massonet.' , Syed Naqvi", Francesco Tusa2
, Massimo Villari",

and Joseph Latanickr'

Centre d 'Excellence en Technologies de l'Inform ation et de la Communication
{Syed .Naqvi,Philippe .Massonet}~cetic .be

Universita degli Studi di Messina , Facolta di Ingegneria
{mvillari,ftusa}~unime .it

Th ales
Joseph.Latanicki~thalesgroup .com

Abstract . Cloud Computing is being a computation resources platform
where it is possible to make up an environm ent flexible and scalable
able to host any kind of services. In Cloud Computing, virtualization
technologies provide all the needful capabiliti es to deploy services and
run applicat ions in an easy way. Furthermore, large-scale cross bor
der virtualizat ion infrastructures present promising landscape to cope
with th e ever increasing requirements of modern scientific and business
applicat ions.

Th e large-scale cross border virtualization infrastructures can be seen
as a federation of heterogeneous clouds. We present pragm atic analysis of
th e potential threats posed to the emerging large-scale cross border virtu
alization infrastructures. We have taken into consideration both internal
and extern al threats to these infrastructures. We also drive the discussion
considering a real model of cloud . In particular an infrastructure cloud is
briefly presented; a useful scenario where to assess security threats and
apply secur ity solut ions, that is the Europ ean Project , RESERVOIR.

Keywords: Cloud Computing, Security Archit ecture, Threat s modelling,
Virtualization infrastructure.

1 Introduction

Currently available cloud architectures do not strongly addr ess security necessi
ties [1,2]. Security has to be considered as an integral part of the development
process rather than being later addressed as an add-on feature. The conception
of a comprehensive security model requires a realistic threat model. Without
such a threat model, security designers risk wast ing time and effort implement
ing safeguards that do not address any realistic threat . Or, just as dangerously,

* The research leading to th e results presented in this paper has received funding
from the European Union 's sevent h framework programme (FP 7 2007-2013) Project
RESERVOIR under grant agreeement number 215605.

D.R. Avresk y et al. (Eds.): C loudcomp 2009, L:-<ICST 34, pp. 73- 82 , 2010 .
© In stitute for Co m p ute r Sciences , Social-Info rm a t ics and Telecommunica ti ons E ngineering 2010



74 P. Massonet et al.

they run the risk of concentrating their security measures on one threat while
leaving the underlying architecture dangerously exposed to others.

In this paper, we drive the discussion considering a real model of cloud. In par
ticular an infrastructure cloud is briefly presented, where it is possible to assess
the security aspects through a meaningful scenario, that is the Resources and
Services Virtualization without Barriers (RESERVOIR) [3]. The RESERVOIR
platform presents concepts as virtualization infrastructure, VEEs, dynamic de
ployment , elastic and autonomic systems where all actions must to be performed
in a secure way. Furthermore the dynamic management of computational re
sources among sites represents the main challenge to cope by the RESERVOIR
cloud computing middleware.

Afterwords a brief description of RESERVOIR, we present a detailed analysis
of the threats to large-scale cross border virtualization infrastructures. These
threats are broadly classified into two major categories namely internal threats
and external threats so as to complement the DolevYao threat model [4]. We
also present some mitigating techniques to cope with these threats and position
them with the existing solutions .

The paper is organised as follows: Section 2 surveys related works; Section 3
briefly covers RESERVOIR basic concepts , explaining its architecture, entities
and stockholders involved. Section 4 presents all the threats that a cloud infras
tructure may suffers by attackers. Sections 5 explains how to face the threats
previously highlighted , providing some solutions, case by case. Section 6 finally
concludes the dissertation.

2 Related Works

The term Cloud Computing, has recently become popular together with Web
2.0. Since such paradigm is mostly new, there are dozens of different definitions
for Cloud Computing and there seems to be no consensus on what a Cloud
is: the paper [5] aims to compare and contrast Cloud Computing with Grid
Computing from various angles, explaining the essential characteristics of both .
According to the authors, Cloud Computing is not completely a new concept;
it has intricate connection to the existing Grid Computing paradigm and other
relevant technologies. This paper offers a good starting point to identify the
different kind of issues involved in cloud computing: the ones related to security
represented a valid basis for our research.

Paper [6] refers to the threats analysis of those scenarios involving general
computer systems: attackers and defenders both strive to gain complete control
over them. To maximise their control , both attackers and defenders have mi
grated to low-level, operating system code. This paper assumes the perspective
of the attacker, who is trying to run malicious software and avoid detection.
By means of the proposed approach , the authors hope to help defenders to un
derstand and defend against the threat posed by a new class of rootkit , called
VMBR (Virtual Machine based root kit), which install a virtual machine moni
tor underneath an existing operating system. As our main paper topic , the one



Mitigating Securit y Threats to Large-Scale Cross Border 75

of this work refers to the st udy of internal threats involved in the execution of
virtual machines. Differently from our case, the study is not st rictly related to
Cloud Computing environments.

3 RESERVOIR - An Example of Large Scale Cross
Border Virtualization Infrastructure

Nowadays, all the commercial cloud infrastructures do not provide any detail
of whole components compounding their systems. As we already highlighted, in
order to overcome to these limitation s and survey however these type of cloud
infrastructures, we performed our assessment on the RESERVOIR cloud sce
nario. In this sect ion we briefly describe the RESERVOIR architecture (many
more details are presented in [3]), hence we will opportunely address the security
issues of a federation of infrastructure providers in the cloud comput ing context .

RESERVOIR will introduce an abstract ion layer that will allow to develop
a set of high level management components that are not tied to any specific
environment . This abstract ion involves a federation of heterogeneous physical
infrastructures. As shown by Figure 1 (reference architecture), in RESERVOIR,
more sites (site A and site B) can share physical infrastructure resources on which
service applicat ions can be executed. All the ent ities depicted by the picture are
explained just below.

Every site is partitioned by a virtualizat ion layer into virtual execut ion envi
ronments (VEEs). These environments are fully isolated runtime modules that
abst ract away the physical characteristics of the resource and enable sharing. The
virt ualized computat ional resources, alongside with the virtualiz ation layer and

D 'P1
D 'P>

Fig. 1. RESERVOIR reference architecture: a federat ion of heterogeneous physical
infrastructures



76 P. Massonet et al.

all the management enablement components, are referred to as the VEE Host. A
service application is a set of software components which work to achieve a com
mon goal. Each component of such service application is executed in a dedicated
VEE. These VEEs are placed on the same or different VEE Hosts within the
site , or even on different sites, according to automated placement policies that
govern the site. Neither Service Provider (SP) nor final User are aware of the real
mapping between service application and hardware resources. In RESERVOIR's
model, there is a separation between SP (e.g. ebay, or Salesforce) and Infras
tructure Providers (IP - Amazon, Google, Flexiscale, etc.). SP are the entities
that understand the needs of particular business and offer service applications
to address those needs. SPs do not have the computational resources needed
by these service applications, instead , they lease resources from a cloud, which
provides them with a seemingly infinite pool of computational resources.

RESERVOIR clouds installed on each site present three different layers (see
Figure 1 RESERVOIR Site A) described as follows:

- Service Manager (SM): it is responsible for the instantiation of the service
application by requesting the creation and configuration of VEEs for each
service component, in agreement with SP performed with a shared manifest .

- Virtual Execution Environment Manager (VEEM) : it is responsible for the
placement of VEEs into VEE hosts.

- Virtual Execution Environment Host (VEEH) : it represents a virtualized
resource hosting a certain type of VEEs. VEEM issues generic commands
to manage the lifecycle of VEEs, and VEEHs are responsible for translat
ing these commands into commands specific to the virtualization platform
abstracted by each VEEH.

4 Security Threats to RESERVOIR Infrastructure

In this section we assess the security issues raising in RESERVOIR architecture,
highlighting those involved in a federation of infrastructure providers in the
cloud computing context. We underline that the added value of our dissertation
is not given by a simple threats classification, given that the work provides the
gathering of more security concerns, with a complete (360 degrees) perspective
of Cloud Computing environments.

In order to take decisions about the RESERVOIR security architecture, in
formation security, policy creation and enforcement, an analysis of the various
kinds of threats facing the RESERVOIR architecture, its applications, data and
information systems is required. Moreover, in order to identify all the possi
ble threats to federations of heterogeneous physical infrastructures, we provide
a simple classification: 1) within a RESERVOIR site for all the interactions
among VEEM, VEEH, and SM; 2) across the RESERVOIR sites for the SLA
based VMI interactions between the VEEMs of different RESERVOIR sites; 3)
outside the RESERVOIR sites for the interaction between SM and SP (SMI).
Actually, the threats reported in item 1 and 2 are quite similar. The communi
cation can be affected by the same type of threats. The vulnerability appears



Mitigating SecurityThreats to Large-Scale Cross Border 77

during the communication between entities and it is also present in all the net
work interfaces. The communications can be categorised as follows: horizontal
communication (parallelepipeds PI and P2, arrows Al and A2); vertical com
munication (vertical arrow A3).

The endpoints in the horizontal communication are both SMs with SPs and
RESERVOIR sites (i.e Site A and B), while in the vertical communication the
entities involved are SMs, VEEMs and VEEH in each site (i.e Site A or B). Hori
zontal communication exposes endpoints toward External Threats. The commu
nications occur throughout Internet since there is an high level of risk. Vertical
communication is the subject of Internal Threats. The SMI, VMI and VHI in
terfaces are located in External Threats.

4.1 External Threats

The Internet represents the same origin of threats for the communication across
the RESERVOIR sites (VMI-VHI interfaces) and outside the RESERVOIR sites
for the SMI interface (e.g. injection , identity theft and spoofing).

All the interfaces could be also exposed different attacks (e.g. denial of service,
flooding and buffer overflow). These kind of threats are aimed toward provoking
a system crash, leading to the inability to perform ordinary functions . All the
interfaces (SMI, VMI and VHI), are affected by the same issues, but we have
to underline the solutions in some cases are different. Considering the VMI and
VHI interfaces, the RESERVOIR system administrator has the full capability to
manage security policies and to apply them on both the sides (endpoints of site
A and site B). Hence in RESERVOIR it is possible to select an its own security
framework. While in the case of communication between SM and SP (SMI),
the RESERVOIR cloud has to use a common security framework shared with
many different partners. Since, it is necessary to solve the same issues under two
different perspective views.

4.2 Internal Threats

RESERVOIR site has a logical representation with three different layers, but
these layers can be compounded by one or more hardware components . Figure 2
gives an overview of these entities and relative mapping with a simplified view
of the hardware. First of all, it is possible to split the site in two different virtual
zones: control and execution zone. In the control zone there are: Service Man
ager (SM), VEEM (in bridge configuration between control and execution zone),
network components (router, switch, cable, etc .), SMI/VMI interfaces and VHI
internal interface .

In the execution zone instead there are: VEEH, VEEM (in bridge configura
tion between control and execution zone), VHI internal interface: VHI, network
components (router, switch, cable, etc .), network storage: NAS, databases, etc
and VHI/User Internet access interfaces.

The control zone can be considered a trusted area. Some threats can appear
through the interfaces 8MI and VEEM, since they fall into the same cases of



78 P. Massonet et al.

SP SP
RESERVOIR SITE

1- SMI
'2. VMI .

SITE: Virtual Environmem» Control Zone

s I
J.

}

"".-
J

\

i
\ /

./

User

3·VHI
4- ........
'Otl~t

u.w

.".
«OIso.<

SITE: Virtual Envlronmenr • Execution Zone

....' I

Fig. 2. RESERVOIR site: internal representation

externa l threats. The firewall located next to the router increases the trustwor
th iness. In this zone the weak ring of the chain is represented by the VEEM.
It is the bridge between two areas , and it allows to exchange data among the
zones. Figure 2 shows a firewall close to the VEEM, added to prevent any attacks
from the execution area. The zone with high level of risk is represented by the
execution zone. It can be considered as Demilitarised Zone (DMZ). This area
shares has all the hardware components. The hypervisor (VEEH) uses the net
work, storage, CPU and ram (host ) to load and execute all the VEEs. To better
explain the role of each component it can be useful to evaluate chronologically
all the phases necessary to execute a Virt ual Execution Environment : VEEH,
once all the requirements from VEE~1 are received, it downloads the VM Image
from the SP, stores the Image into the NAS, it performs the setup configura tion
and executes the VM. The internal threats related with these phases can be
classified as: 1) authentication/ communication of SPs and other RESERVOIR
site; 2) misbehaviour of service resource allocation due to malicious manifests ; 3)
data export control legislat ion: on an international cloud or between two clouds;
4) fake command for placement of VEEs and compromising data integrity of
Distributed File System (NFS, SAMBA, CIFS); 5) Storage Dat a compromising
(fake VEE image); 6) data privacy compromising; 7) hypervisor and OS security
breaking; 8) dat a partitioning between VEE.

To avoid any fraudu lent access, the VEEH has to verify authentication/
communication of SPs and ot her RESERVOIR sites. Thus is the same behaviour
analysed for all the communicat ions in externa l threats . Relat ively to later group
of threats (3,4,5 - 6,7,8) RESERVOIR site has to guarantee different types of
isolation, th at is: runtime isolation, network isolation and storage isolation.



Mitigating Security Threats to Large-Scale Cross Border 79

Runtime isolation resolves all the security problems with the underlying OS.
The hypervisor has to provide all the solut ions.

Network isolation is addressed via the dynamic configurat ion of network poli
cies; virtual circuits that involve Routers and Switches (Virtual LAN) (See figure
2, there are more virtual circuits with different colours).

To avoid fake VEE image loading and do not compromise dat a privacy, stor
age isolation has to be performed and secure protocols has to be used. Protocols
like NFS, SAMBA, CIFS are not secure. Virtual Execution Environment , down
loaded from any generic SP, can expose the infrastructure toward back door
threats, spoofing threats and malicious code execut ion (virus, worm and Trojan
horse). The RESERVOIR site administ rator needs to know at any time the state
of threats, with a strong monitoring of the execution zone.

5 Mitigating Techniques for Security Threats

This section present s some security techniques that could be used to mitigate
some of the securit y threat s described in the previous sect ion. It is by no means
a complete and detailed description of the RESERVOIR security architecture
th at is required to cover all of the threats described in the previous section.
This sect ion does not argue on the isolation needed at hypervisor level (VEER)
(runtime isolation). These type of threat s could meaningful compromise the
whole architecture and they have to be t reated in a careful way. Paragraph 5.6
highlights a possible solut ion able to reduce, and even remove all the risks related
to runtim e isolation.

5.1 Centralised or Decentralised PKI: Cross Certification?

One of the key security issue in a virtualized architecture is the identifica
t ion/authenticat ion of all the different elements which build up a Cloud. To
be able to ident ify and authenticate such elements , one solution is to use a Pri 
vate Key Infrastructure (PKI) based on cert ificates cont rolled by a Certificat ion
Authority (CA). But two solutions are available, a centralised or a distributed
architecture. Another issue is raised by the fact th at every architecture provider
will have its own PKI. To solve this issues, one could use a cross certification
process which will permit the use of every agreed CA certificates in the cloud ,
but this process is quit painful to run due to legal aspects . Another solut ion
would be to create a root CA and then the PKI becomes fully centralised. This
solution brings new issues such as, who is going to manage and run this root
CA.

The choice of centralised or distributed PKI also depends on the centralised or
decentralised cooperat ion between RESERVOIR sites. In the case of centralised
cooperation a virtual organisation could be formed by relying on a unique cert ifi
cat ion authority. The virtual organisat ion could then provide authent ication and
access control for all RESERVOIR sites: cooperat ion would only be authorised
between RESERVOIR sites that are members of the same virtual organisation .



80 P. Massonet et aI.

However, in the case of decentralised cooperation between sites that form a
loosely coupled federat ion, a distributed PKI architect ure is more adequate. In
this approach each site is responsible for esta blishing and managing t rust re
lationships with other RESERVOIR sites. A potential security architecture for
RESERVOIR could supports multiple cert ification authorities. Th is architect ure
int roduces cert ification authorities (CA) and a new component for each site, an
LDAP slave server. CA entities can be externa l, e.g. Verisign or Digital Signa
ture Trust Company, some sites can have their own RESERVOIR certification
aut horities.

The LDAP server represents the entity where it is possible to publish cert ifi
cates of service providers (SPI , SP2, SP3 etc. etc.) , service managers (SM site
A, SM site B, SM site C etc.), VEEM (VEEM site A, VEEM site B, VEEM
site C etc.), as well as relationships between sites and VEEH (VEEH of site
A, VEEH of site B, etc.) and relationships between VEE and service providers
(VEEI belong to SPI , VEE2 belong to SP2, VEE3 belong to SP3 etc .). In a
Masterj Slave configuration each site has a consistent copy of all information .

5.2 Ciphering: Communications, Data, Customer Data in the
Management

One of the major th reats in a virtu alized architecture is about the communi
cat ions and data confident iality. Many technical solutions are available, such as
Secure Socket Layer (SSL), IPSEC... One has to be careful to use the right al
gorit hm and the right key length to be sure of the robustness to the solution.
Speaking of keys, some issues raise. Who is delivering keys, how are they dis
tributed? A good way is to use the TPM component which is mainly built for
this purpose. It could be used also to generate keys to ciphered data, but what
about the key recovery process issue. How to recover the key used to cipher data
when this key has been lost.

5.3 Virtual or Physical Firewalls

Obviously, t here will be firewalls in a virt ualized architecture, but we can use
physical or virt ual one. Physical firewalls are well known and described. Some of
them are cert ified and we know a lot about their security. Some virtu al firewall
are now available, and it seem more elegant to use them in a virt ualized archi
tecture. On both type of firewall, an issue is raised about their management.
Some new threats should be taken into account . A simple human error could
brake the full isolation (this thr eat exists also in a sta ndard architecture). In
that case traceability of the administrat ion activity should be available to be
able to build organisat ion processes to avoid such errors. This t raceability which
could available to the Cloud service provider as to the user , could be a good way
to inspire confidence in a Cloud Computing architect ure.

5.4 Virtual Switches: VLAN in the Architecture

Virt ual LAN Network (VLAN) technology is well use, accepted in the IT world
and can be used in a virt ualized architecture. As for firewall some virt ual switches



Mitigating SecurityThreats to Large-Scale Cross Border 81

begin to be available in these architecture. These VLAN can be used to isolate
networks, but again as for firewalls the administration issue has to be solve and
traceability is a possible way to help to solve it .

5.5 Securing Migration of VEEs

The security of migration of VEE between different RESERVOIR sites that have
different security policies must be addressed . One approach to securing migration
is to use security profiles. The service provider that submits a service manifest
to a primary RESERVOIR site also needs to provide a required security profile.
Submission to the RESERVOIR site would only be authorised if the required se
curity profile matches the infrastructure security profile of the primary RESER
VOIR site . Migration of VEEs to a destination site would only be authorised if
the required security profile matches the destination security profile.

A security profile is defined in terms of security features found at each site
such as the use of RTTPS, a firewall, an encrypted file system, a VPN tunnel
or a VLAN. Security profiles is ordered from less secure to more secure. This
ordering between security profiles provides the basis for comparing and matching
security profiles.

5.6 Mitigating Techniques through the OpenTC Solution

Considering the architecture presented previously, many threats may be derived
by the compromising of runtime isolation. The risks are carried out by the fact
that a malicious software (malware) can be execute at VEER level. These mal
wares could be installed either inside the VEEs or in between of hypervisors and
hardware. Latest type of threats are well recognised in [6]. The authors under
line the possibility to install a malware able to change the boot sequence. In
our cloud platform , we don't have to make an in-dept introspection of hyper
visors' functionalities. But, the architecture needs to monitor the hypervisor's
behaviour and verify its authenticity and integrity.

Therefore , our cloud implementation we are developing, has to guarantee isola
tion at VEER level and it has to be able to avoid the probability that a malicious
software gains the control of a site. In order to mitigate these threats, we iden
tify a set of capabilities based on Trusted Computing (TC) , and in particular
through its open source implementation: OpenTC.

Trusted Computing is an effort to bring some of the properties of closed, pro
prietary systems to open, commodity systems. This is done using a combination of
hardware and software components . Furthermore, these components allowto check
and enforce the integrity ofa system, and authenticate itself to remote systems. The
hardware block that provides trustiness to wholesystem is called Trusted Platform
Module (TPM) , that is tamper-resistant and has an embedded private key. This
component is able to assure the identification of all the hardware or software com
ponents of the architecture, but it has to be available on all the equipments which
is not always the case. Although TC is controversial as the hardware is not only se
cured for its owner, but also secured against its owner as well, we think, its feature
may really increase the trustiness in Cloud Computing.



82 P. Massonet et al.

6 Conclusions and Perspectives

We have presented a pragmatic analysis of a range of potential threats to the
emerging large-scale cross border virtualization infrastructures. The focal point
of this work was cloud computing architectures. In the detailed presentation
of these threats and their impact on the overall functioning of clouds is elab
orated. We have also explored various security solutions to effectively address
the security requirements of virtualization infrastructures. It is important to re
member that security is a process, the threat picture is always changing, and
threat analysis needs to be continuously updated. In other words, virtualization
infrastructure should be subject to constant review and upgrade , so that any
security loophole can be plugged as soon as it is discovered.

We are working on a comprehensive security model for a reference architecture
of Cloud deployment. We plan to use this threats analysis in defining various
core functionalities of the eventual security solutions .

References

1. Amazon Web Services: Overview of Security Processes,
http://s3 .amazonaws.com/aws_blog/AWS_Security_Whitepaper_2008_09.pdf

2. Comprehensive review of security and vulnerability protections for Google Apps ,
http ://www.google.com/a/help/intl/en/admins/pdf/
ds_gsa_apps_whitepaper_0207.pdf

3. Juan Caceres, R.M., Rochwerger, B.: Reservoir: An architecture for services, the
first issue of the reservoir architecture document (June 2008),
http://www.reservoir-fp7.eu/twiki/pub/Reservoir/YearlDeliverables/
080531-ReservoirArchitectureSpec-l.0.PDF

4. Dolev, D., Yao, A .C.: On the Security of Public Key Protocols. In: Proceedings
of the IEEE 22nd Annual Symposium on Foundations of Computer Science, pp .
350-357 (1982)

5. Foster , I. , Zhao, Y., Raicu , I., Lu, S.: Cloud Computing and Grid Computing
36Q-Degree Compared. In: Grid Computing Environments Workshop, GCE 2008,
November 2008, pp . 1-10 (2008)

6. King, S.T. , Chen , P.M., Wang, Y., Verbowski, C., Wang, H.J. , Lorch, J .R.: Subvirt:
Implementing malware with virtual machines . In: SP 2006: Proceedings of the 2006
IEEE Symposium on Security and Privacy, Washington , DC, USA, pp. 314-327 .
IEEE Computer Society, Los Alamitos (2006)



Activity Control in Application Landscapes

A Further Approach to Improving Maintainability of
Distributed Application Landscapes

Oliver Daute and Stefan Conrad

SAP Deutschland AG& Co. KG, University of DUsseldorf, Germany
oliver .daute@sap.com, conrad@cs .uni-duesseldorf .de

Abstract. The system administration has been waiting for a long time for pro
cedures andmechanism for more control overprocess activities within complex
application landscapes. New challenges come up due to the use of linked up
software applications to implement business scenarios. Numerous business
processes exchange data across complex application landscapes, for that they
usevarious applications, retrieve andstoredata. Theunderlying technology has
to provide a stable environment maintaining diverse software, databases and
operating system components. The challenge is to keep the distributed applica
tionenvironment undercontrol at anygiven time. Thispaper describes a steer
ing mechanism to control complex application landscapes, in order to support
system administration in theirdaily business. Process Activity Control , PAC is
an approach to get activities under central control. PAC is the next reasonable
step to gaining more transparency and visibility to improving system mainte
nance of Cloud Computing environments.

Keywords: Cloud computing, complex application landscape, distributed infra
structure, process activity control, RT-BCDB, Code ofbusiness process.

1 Introduction

More transparency and control inside complex application landscapes is required
[6] [9] since concepts like Cloud Computing [17], client-server architectures, service
oriented architecture [12], or IT service management [5] make it possible to build up
giant networked applications environments. New mechanisms are required to ensure
maintainability, evolution and data consistency in order to support the operation of the
underlying distributed information technology. Cloud Computing infrastructures
require control, virtualization, availability and recovery of their applications and data.

Process Acrivity Control (PAC) is the next step after the introduction of the Real
Time Business Case Database (RT-BCDB) [1]. The concept of PAC concentrates on
the control of processes activities which are currently running within an application
landscape. The goal is to avoid indeterminate processing states which can cause
further incidents within a Cloud environment.

Most enterprise or service frameworks are focused on business requirements which
have improved the design of enterprise solutions significantly but often with too little

D.R. Avresky et al. (Eds.) : Cloudcomp 2009, LNICST 34, pp. 83-92, 2010.
© institute for Computer Sciences , Social-informatics and Telecommunications Engineering 2010



84 O. Daute and S. Conrad

consideration for the underlying information technology. Operation interests are ne
glected and lillie information about how to run a designed enterprise solution can be
found. A sequence of application processes (e.g. a business case) is able to trigger
process activities across the whole landscape, uses different applications, servers and
exchanges data. The challenge for the system administration is to manage these com
plex Cloud environments and to react as swiftly as possible to incidents [11].

The missing outer control mechanism is the fundamental idea for Activity Control
in application landscape. Activity Control is an approach to having power over proc
esses in order to reduce incidents, to gain more stability and to improve maintainabil
ity. PAC and RT-BCDB are able to improving the system administration in Cloud
application environments significantly .

2 Terms and Areas of Discussion

The term RT-BCDB [1] stands for Real-Time Business Case Database and it is an
approach to collecting and providing information about business process activities in
heterogeneous application landscapes. In RT-BCDB information about run-states of
active business processes are collected and stored synchronously . This information
supports the system administration during maintenance activities of complex applica
tion environments and is an important source of information for the business design
ers as well. In detail, RT-BCDB stores information about business cases, business
processes, process owner, history of previous processing, execution frequencies, run
time, dependencies and availabilities of processing units and applications . Knowledge
about run-states of business processes is important for maintaining and controlling
processes and applications [I].

A Cloud computing environment or application landscape or application infrastruc
ture can consist of 'simple' applications, ERPs, legacy systems, data warehouses, as
well as middleware for exchanging data and connecting software applications. Clouds
are complex distributed application landscapes.

A business case combines (cloud) applications and describes a sequence of activi
ties to fulfill specific tasks. Business cases make use of different applications and
databases across a landscape with regard to the enterprise needs. A business (applica
tion) process consumes data or provides them and can trigger other processes or ser
vices. Processes which have a high importance, such as invoicing, are called core
business processes. An enterprise solution is built up of several software components
and information sources. It is designed by the business requirements. Business cases
determine the tasks of the customer 's enterprise solution.

3 The Idea

Process Activity Control is required because of the continuously increasing complex
ity of application landscapes driven by business requirements, modem tools and en
terprise application frameworks which make it more comfortable to design enterprise
application solutions [8]. The challenge for the IT administration is to manage these
application environments in any situation. New mechanisms are required to assist the
system administration in their work.



Activity Control in Application Landscapes 85

Frequently, incidents within application landscapes interrupt business processes
while they are performing a task. The malfunction of a processing unit or of an appli
cation can cause business processes failure. Business processes need to be restarted or
rolled back for completion to reach a consistent state within the business data logic.
The increasing complexity of software solution is the number one cause of system
failures [3].

3. Business
processes fai I

Fig. 1. Failure within theapplicationenvironment

The idea of PAC is to minimize uncontrolled failure and reduce the amount of in
cidents. If problems within the application landscape are already known, for instance
a database stopped processing then there is no reason for a business process to start
with the risk of halting in a failure situation. PAC acts proactively and thus avoids
disruptions when problems are known.

PAC also addresses another unsolved problem: the start and stop process of an ap
plication landscape or parts of it. It is still a challenge and complex matter to
shutdown an application without the knowledge of dependent processes running
within the environment. Business processes are triggered by different activators. At
the moment, no outer control for business case in Cloud application environments is
available.

The figure depicts a well-known situation in application environments without
process control. When a server fails, all applications and database used to run on this
processing unit will fail too. Business processes using these applications and data
bases will be impaired and must terminate immediately. In application environments
without PAC this uncontrolled failure of business processes may result in unknown
run-states or data inconsistencies.

From the perspective of a business case or an enterprise solution, a consistent state
requires more than data integrity on database level. Also dependent interfaces or sin
gle process steps must be taken into considerations. Those can halt in an inconsistent



86 O. Daute andS. Conrad

state anywhere in an application environment. The challenge is to avoid these incon
sistencies. The basis for this is the knowledge about business processes, dependen
cies, availabilities and run-states information. Our goal is to support the system ad
ministration in their work.

PAC works as an outer control mechanism for processes and is especially valuable
in the control of core business processes. To interact with application processes, PAC
makes use of RunControl commands. PAC is able to collect run-states and send them
to RT-BCDB. PAC works best in collaboration with RT-BCDB.

4 Code of Business Processing

Various situations arise in distributed application landscapes because of missing
form of identification. These are not easy to handle or to overcome in case of inci
dents. For activity control we propose a Code of Business Processing, CoBP. This
code contains general rules and requirements for using an application environment.
The code should only be applied to processes which are of significance for the enter
prise solution itself.

Traffic laws are simple and effective. They are necessary to control and steer the
traffic within a defined infrastructure. Traffic laws describe a kind of code of conduct
which participants (road users) have to accept. It is an appropriate mechanism for a
complex environment with easily learnable rules. We will try to translate some ele
ments of traffic laws and network into a code for business processes used for complex
application environments.

First CoBP: Each process must have a unique form of identification. This is re
quired to identify a process and to steer the process while it is active. Second: Each
process must have a given priority. The higher business processes must process first,
unless PAC decides it differently. Third: Each business process must be documented .
It must belong to a business case and visualization must exist. Procedures must be
given for recovery purposes in case of a failure. Fourth: The higher a priority is the
higher the charge for a business process. A process with a high priority does have a
significant impact on all other processes that run within that environment.

Ideally, communication between processes should always take place on traceable
ways. Fifth CoBP: Business Processes should use defined and traceable ways for
processing. This forces the use of known interfaces, improves the traceability and
supports the maintainability of Cloud application landscapes.

5 Basic Elements of PAC

Process Activity Control is an approach to controlling process activities in complex
Cloud application environments. PAC is aware of the function states of processing
units and applications. PAC will stop further processing in case problems occur
within the application environment. This will prevent business processes running into
undefined processing states.

PAC has to consider several issues in order to control process activities. A major
task is, for instance, determining the function state of processes, applications and
processing units. PAC can take advantage of the agents introduced with RT-BCDB.



Activity Control in Application Landscapes 87

The tasks of the agents are dependent on the kind of source of information. The
agents inspect the given sources and try to identify run-state and availability informa
tion. On the hardware and application level, agents can search for a specific pattern in
a log file to determine the function state. Application processes on operating system
can be monitored as well to identify availability or throughput. A premature termina
tion of an application process may point to a failure.

For smaller environments this mechanism provides information which is sufficient
enough to control process activities. For large application landscapes PAC must also
be informed of run-states of business processes . Therefore PAC will benefit when
using the knowledge base of RT-BCDB.

The information is used to react to current circumstances within the application en
vironment. PAC will try to avoid any starting of processes which will make use of a
malfunctioning processing unit or impaired application or process or service.

Basic elements of PAC: a decision-control mechanism, a Custom Rule Set, the
CoBP, an interface to RunControl , and a communication process to RT-BCDB.

Custom
Rule Set

receive
&

answer

Run CtR
Control

PAC

request & update RT-BCDB_______ J(
Fig. 2. Architecture of PAC

The decision-control mechanism is subdivided into four main activities: receive
request, evaluate, decision and control. Each activity has one or more tasks.

Activity ' receive request', just receives the Request for Run (RtR) in sequence of
income. Whenever an application process starts or stops or changes its run-state , then
RunControl will send an RtR. The RtR contains the ID and the state of running.

Activity 'evaluate', evaluates the RunControl request against the information
stored in RT-BCDB. The run-state table of RT-BCDB always reflects the status of
process activities within the application environment. Any known problems with the
availability of applications or processing units are taken into consideration.

The 'decision ' process is an activity based on CoBP, Custom Rule Set and the
evaluation of the previous activity. A final decision will be prepared to return a 'Con
firmation to Run (CtR)' or to stop or to halt a business process or application.



88 O. Daute and S. Conrad

The 'control' activity is the steering part. It has two functions. The first function is
to answer the RfR and to send a CtR. In case a business process must be paused, the
control process waits to send the CtR until problems are solved. The second function
is to stop business processes in case the application landscape has to be shut down.
Vice versa 'control' enables the start-up of business cases in a predefined sequence,
for instance after system maintenance activities or after the elimination of incidents.
The Custom Rule Set contains customized rules given for a customer' s application
landscape. The rule set can contain an alteration of priorities or a list of business cases
which have to run with a higher priority. Also preferred processing units can be part
of the rule set.

Further basic elements are CoBP, described previously and the applicat ion inter
face which is used to communicate with RT-BCDB.

PAC as a control instance must monitor its own availability. Therefore at least two
instances of PAC must run within the application environment. This is necessary to
prevent that PAC is becoming a single-point offailure for the application infrastruc
ture. One instance of PAC is the master instance and the second is functioning as the
backup instance. If PAC detects a malfunction with its master instance then it passes
control to the second instance. In normal operation the second instance should also be
used to answer RfR. This makes sense for the distribution of workload of PAC and
will avoid delays in the steering of business process activities.

6 Run-Control

PAC introduces an extension to RunControl commands. RunControl commands are
used to receive information about process run-state. They are also required for con
trolling the progress of process activities.

Fig. 3. Collecting Run-State

Whenever a process starts, stops or waits, the RunControl command will send a
message with the process ID and the run-state. RunControl statements were first in
troduced with the architecture of RT-BCDB. There, RunControl statements are used
to collect run-states and to store them immediately in the run-state table of RT
BCDB. Due to this an overview of current process activities is available at any time.

Several options are given to implement RunControl statements. One option is in
serting RunControl statements into the source code. This makes sense especially for
newly designed applications [2] [l6] [14]. For existing applications adaptations are



ActivityControl in Application Landscapes 89

possible for instance during migration projects [13]. For sure, reverse engineering
should be the preferred discipline to enrich the resource code with RunControl
statements.

PAC adapts the concept of RunControl statements to its needs . The first change is
to the business information flow [2]. Instead of sending run-states information using
the agents, the RunControl statements send this information to PAC. PAC forwards
the information to RT-BCDB . The second change is the extension of functionality.
Each RunControl statement sends, in addition to run-state information , a 'Request to
Run'. The RunControl function waits until it receives a 'Confirmation to Run' from
PAC.

To distinguish between the two versions of RunControl statements, we will use an
extended version for PAC and call it RunControlAC. The RunControlAC com
mands send the business case ID, run-state and an RfR.

RunControlAC(process-ID,run-state)

Fig. 4. RunControl for Activity Control

Certainly, some effort is needed for implementation of the RunControlAC. But
with the constantly increasing complexity of Cloud application landscapes, a mecha
nism as described is indispensable for keeping distributed infrastructures under con
trol. Consequentl y for the future design of business solution, applicat ions should be
developed with regard to run-state information or RunControl statements.

7 Improving System Maintainability

The aim of the concept is to gain more control over Cloud applications, as well as the
prevention of incidents.

An example depicts how PAC is able to avoid incidents due to known problems. A
failure of a server (processing unit) occurs and therefore an installed database must
stop its processing. PAC recognizes this problem and stops further processing of
business processes using the failed unit. Two business cases requesting to run are
stopped by PAC and avoid indeterm inate processing states. The application processe s
have to wait until the problem is solved. If a shadow database is available , PAC can
move business processing to it.

PAC will make use of RT-BCDB information to decide the confirmation of a 'Re 
quest for Run' . If incident s to applications, processing units or business cases are
known, then PAC will determine if a 'Request for Run' will make use of them. The
run-states and availabilit y information , stored in RT-BCDB , provides this important
knowledge, as well as dependencies within the application infrastructure .

How to measure improvements in terms of Return of Investments? Some benefits
are already shown and we will try to answer this question with regard to time, quality
or money. We will start with time.

Time: Each incident which was prevented saves time. An incident costs time to
identify the cause and time to solve. Additional time is needed for reporting and



90 O. Daute and S. Conrad

documentation of the solution process progress, and several persons of different de
partments are involved. Users are hindered in their work and will lose time. We as
sume that each incident costs in sum an average of 6 hours.

Money: Costs arise due to incident handling, software for incident tracking and sup
port staff. Downtimes can cause less productivity and can result in fewer sales. In the
worst case, especially in the area of institutional banks, an unsolved incident can
cause bankruptcy within a few days [3].

BP1S2 ·

3. PAC stops
further processing

( 
~
~

---'--'"

-~;J-l'--'

Fig. 5. Avoid indeterminate run-states

Quality is often not easy to measure. For Cloud application landscapes quality
means availability, reliability, throughput and competitiveness. We assume that for
large environments the investment in regard to the increase in quality will save money
in the end. In smaller environments our concept will at least improve quality.

Maintenance tasks like updates or upgrades of the Cloud landscapes also require
detailed information about the business processes possibly involved. PAC can prevent
business process activities while parts of the application landscape are under construc
tion. In case of performance bottlenecks, PAC is able to stop a business process in
order to prevent that a problem from getting worse. Or PAC decides to shift an RtR to
another Cloud application if possible. These are examples of how PAC is able to
improving the maintainability of a Cloud application landscapes .

8 Extensions for Frameworks

Most enterprise or service frameworks are focused on the business requirements and
neglect the operation interest. Concepts like SOA [12], ITService Management [5] or



Activity Control inApplication Landscapes 91

TOGAF [15] improve the design of application solutions but often with too little
consideration for the underlying information technology. Business cases can be cre
ated easily by orchestrating services (compositeapplication). But there is no informa
tion how to control them. No mechanisms are described how to react to problems
within an application landscape. An active steering process is also not part of the
frameworks . PAC is able to extend these frameworks and can reduce the TCO [4]
significantly.

Virtualization, in the sense of representation, is one of the enablers of Cloud Com
puting infrastructures. Servers are pooled together acting like a large computing
resource. Virtualization is the basis for new application platforms for managing dis
tributed computing resources efficiently. Also process activities and their representa
tion must be taken into consideration as presented in this paper. The goal is to gain
more transparency and control over processes in order to reduce cost-intensive inci
dents and to avoid data inconsistencies on businessprocess level.

Computing Clouds and the concepts, as mentioned above can benefit from the
ideas of PAC & CoBP & RT-BCDB for gaining better maintainability and higher
availabilityof an application landscape.

9 Conclusion

Maintenance and control of constantly increasing complexity of Cloud Computing
environment are challenging tasks. New mechanisms as described are indispensable
for keeping a distributedapplication infrastructure maintainablein the future.

PAC is a concept for gaining control, higher availability and better visibility of ac
tivities within Cloud application environments. Application processes will run into
fewer incidents. The system administration can react more purposefullydue to better
transparency.

PAC is a further step to getting distributed application infrastructures landscapes
under control. The concept works best in collaboration with the RT-BCDB [I] . Our
ideas should encourage future research to invest more on these topics [7].

References

I. Daute, 0 .: Introducing Real-Time Business CASE Database, Approach to improving sys
tem maintenance ofcomplex application landscapes. In: ICEIS II th Conference on Enter
prise Information Systems (2009)

2. Daute, 0 .: Representation of Business Information Row with an Extension for UML. In:
ICEIS 6thConferenceonEnterprise Information Systems (2004)

3. Economist Intelligence Unit: Coming to grips with IT risk, A report from the Economist
Intelligence Unit, White Paper (2007)

4. Gartner Research Group: TCO, Total Cost of Ownership, Information Technology Re
search (1987), http: / /www.gartner .com

5. ITIL, IT Infrastructure Library, ITSMF, Information Technology Service Management
Forum, http : / / www.itsmf .net

6. Kobbacy, Khairy, A.H., Murthy, Prabhakar, D.N.: Complex System Maintenance Hand
book. Springer Series in Reliability Engineering (2008)



92 O. DauteandS. Conrad

7. Mei, L.: More Tales of Clouds: Software Engineering Research Issues from the Cloud
Application Perspective. In: 33rd Annual IEEE International Computer Software and
Applications Conference (2009)

8. Papazoglou, M., Heuvel, 1.: Service oriented architectures: approaches, technologies
and research issues, Paper. International Journal on Very Large Data Bases (VLDB) 16,
389-415 (2007)

9. Rosemann, M.: Process-oriented Administration of Enterprise Systems, ARC SPIRT pro
ject, Queensland University of Technology (2003)

10. Sarkar, S., Kak,A.c.,Nagaraja, N.S.: Metrics for Analyzing Module Interactions in Large
Software Systems. In: The 12th Asia-Pacific Software Engineering Conference, APSEC
2005(2005)

11 . Schelp, J.: Winter, Robert: Business Application Design and Enterprise Service Design: A
Comparison. Int.1. Service Sciences 3/4 (2008)

12. SOA: Reference Modelfor Service Oriented Architecture Committee Specification (2006),
http : / /www.oasis-open.org

13. Stamati, T.: Investigating The LifeCycleOf Legacy Systems Migration. In: European and
Mediterranean Conference on Information Systems (EMCIS), Alicante Spain(2006)

14. Svatos, 0 .: Conceptual Process Modeling Language: Regulative Approach, Department of
Information Technologies, University of Economics, CzechRepublic (2007)

15. TOGAF, 9.0: The Open GroupArchitecture Framework, Vendor- and technology-neutral
consortium, The OpenGROUP (2009), http : / /www. togaf . org

16. UML: Unified Modeling Language, Not-for-profit computer industry consortium, Object
Management Group, http : / /www. omg. or g

17. Vouk, M.: Cloud Computing - Issues, Research and Implementations. In: Proceedings
of the 30th International Conference on Information Technology Interfaces (IT! 2008),
pp. 31-40 (2008)



PerfCloud: Performance-Oriented Integration of
Cloud and GRID

Valentina Casola", Massimiliano Rak2 , and Umberto Villano"

1 Dipartimento di Informatica e Sistemistica,
Universita degli studi di Napoli Federico II

casolav~unina.it

2 Dipartimento di Ingegneria dell'Informazione,
Seconda Universita di Napoli
massimiliano.rak~ina2 .it

3 Dipartimento di Ingegneria,
Universita del Sannio
villano~nnisannio .it

Abstract . Cloud Computing and GRID computing are two different
but similar paradigms for managing large sets of distributed computing
resources, and there have been many efforts that aim at integrat ing them.
The cloud on GRID approach should provide to final users a simple
way to manage their resources and to interact with the offered services.
This paper proposes the PerfCloud architecture, which offers a set of
services able not only to create Virtual Clusters (YCs) that become part
of the GRID, but also to predict by simulation the performance of user
applications. It also presents the PerfClondClient , a user-friendly client
with graphical interface to the PerfCloud services.

Keywords: Cloud Computing, GRID, Performance.

1 Introduction

Cloud comput ing, widely known after the success of the EC2 Amazon project [1],
is an emerging paradigm, which is steadily spreading in the e-business world. In
essence, cloud comput ing is based on the use of distributed comput ing resources
that are easily allocated, de-allocat ed, migrated and possibly re-allocated on user
request. As such, it relies heavily on the use of virtualiza tion technologies (e.g.,
[2,3]), able to offer an almost unlimited amount of comput ing resources. Thank s
to virt ualizat ion, which controls the access to physical resources in a t ranspa rent
way, it is possible to offer computat ional resour ces t hat final users can configure
as administ ra tors, without any restrict ion.

On t he other hand , GRID computing is basically a paradigm t hat aims at en
abling access to high perform ance distributed resources using a service-oriented
st andardized approach. As such, it is widely diffused in the e-science world .
In practice, GRID is born wit h t he Globu s project , and currently the Globus
toolkit [4] and gLite [5] are t he most relevant implementat ions available. In

D.R. Avresky et a l. (E ds.): Cloudc omp 2009, LN ICS T 34 , p p . 93- 102, 2010.
© Inst it ut e for Co mputer Sc ien ces, Social- Informatics a nd Telecom mu nication s Engineering 2010



94 V. Casola, .\;1. Rak, and U. Villano

GRIDs, users can compose complex stateful services in order to build up com
plex and typically computation-intensive tasks. This is obtained by means of a
middleware paradigm: every host has a GRID interface , and developers adopt
middleware-dependent APIs for building up their applications.

In fact, cloud and GRID computing paradigms have many points in common:
both adopt large datacenters , both offer resources to users, both aim at providing
a common environment for distributed resources. The integration of the two
environment is a debated issue [6]. At the state of the art, there are two main
approaches for their integration:

- GRID on Cloud: a cloud IaaS (Infrastructure as a Service) approach is
adopted in order to build up and to manage a flexible GRID system [7] . As
in this context the GRID middleware runs on a virtual machine, the main
drawback of this approach is performance . Virtualization inevitably entails
performance losses as compared to the direct use of physical resources.
Cloud on GRID: the stable GRID infrastructure is exploited to build up a
cloud environment. This solution is usually preferred [8], because the cloud
approach mitigates the complexity of the GRID. In this case, a set of GRID
services is offered in order to manage (create, migrate ...) virtual machines.
The use of Globus workspaces [8], with a set of GRID services for the Globus
Toolkit 4 is the prominent solution, as in the Nimbus project [9] .

Both approaches have positive aspects but also serious problems for overall sys
tem management, as the environments are very complex and managed through
thin command-line based clients. In this paper, we essentially propose to use a
Cloud on GRID approach , adopting the Virtual Workspaces GRID services to
build up a Cluster on Demand (CoD) system. In other words, our system can
create Virtual Clusters (VCs) on user request. These VCs are natively provided
with support for high performance application development (HPC compilers,
MPI, OpenMP, .. . ). The newly created VCs are directly accessible through the
Globus middleware (they contain a preconfigured Globus container) and so they
contribute resources to the GRID environment.

PerfCloud, the architecture we are developing [10] and that is the object of
this paper, offers a set of services able not only to create VCs on user request ,
but also to predict by simulation how fast the target application will run on the
newly created system . This is an original approach , that can help the user to
re-modulate the resources requested for his VC in order to meet his performance
expectations. Alternatively, the performance predictions obtained through Per
fCloud can be used for optimizing the application to be executed in the VC. For
simulation purposes , target applications are described in a high-level description
language (MetaPL) ; the performance predictions are obtained by a simulation
environment named HeSSE [11] .

From the user point of view, the use of PerfCloud is very simple. By invoking
the GRID service VCService, it is possible to create the Virtual Cluster, to ob
tain an IP address to access it , and to build automatically a configuration filethat
will be successively used for simulation. An additional service (BenchService)



PerfCloud: Performance-Oriented Integration of Cloud and GRID 95

runs a set of predefined benchmarks to characterize the performance of the new
VC and measures the timing parameters needed by the simulator. Finally, the
SimulationService accepts the high-level description of the applicat ion, runs
the simulat ions, and returns the predicted response time of the given applicat ion
on the previously create d VC.

When a cloud is created on the top of a GRlD , user access to services ex
ploits underlying GRlD access services. Moreover, all the security features of
the cloud environment are implemented through the GRID infrast ruct ure. Most
state-of-the-art GRIDs, being oriented to HPC, offer only simple command line
based interfaces, and are not particularly user-friendly. We have implemented a
client for PerfCloud that offers a simple interface to the virtualized resources.
We will also present here the PerfCloudCl ient , an extensible metaclient com
ponent th at makes it possible to invoke generic GRID services, together with
specific performance-oriented PerfCloud services. PerfCloudClient is provided
with graphical interface and is accessible thro ugh a tray icon on the host desk
top . A small framework for writ ing new services makes it possible to define their
graphical interfaces and to include them into the metaclient .

The remainder of this paper is st ructured as follows. In Section 2 we will illus
trate the PerfCloud architect ure. Sect ions 3 and 4 describe the main components
of the architecture that enable the integrat ion of the cloud and GRID environ
ments, whereas Section 5 introduces the client that offers services to manage the
infrastructure and provides graphical utilities for end-users. In Section 6 related
work is briefly reported. Finally, the conclusions are drawn and our future work
is sketched.

2 The PerfCloud Architecture

PerfCloud is a framework that provides performance prediction services in an
e-science cloud. The design relies on the adoption of a set of grid services able to
create a Virtual Cluster (VC) and to predict the performance of a given target
application on that particular VC.

As mentioned in the introduct ion, PerfCloud builds a IaaS (Infrast ruct ure as
a Service) cloud environment upon a GRID infrastruct ure. The PerfCloud model
of the infrast ructure is a collection of cluster s, each of which is composed of a
front-end node (FE) and a set of comput ing nodes in a private network. Both
the nodes and the network can be physical or virt ual.

The clusters managed by PerfCloud participate in the underlying GRID and
offer their computa t ional resources to the GRlD infrastructur e. Their FEs host
a Globus container and are cert ified within the GRID Virtual organization. The
FEs also host job schedulers (such as PBS or Condor) to distr ibut e the workload
on their computing nodes.

Figure I describes the overall architect ure of PerfCloud. The PerfCloud ap
plication client resides on a user machine (which has access to the GRID envi
ronment ) and interacts with the PerfCloud system through invocation of GRlD
services. Furthermore, it manages GRlD connections, also providing utilities for



96 V. Casola, M. Rak, and U. Villano

end-users as, for example , performance analysis services. The architecture pro
vides different GRID services that enable the user to build up a new cluster
as a GRID Virtual Workspace [8] with full access rights . The GRID services of
PerfCloud also offer other performance evaluat ion services (simulation , tuning
and benchmarking) that can be invoked to simulate and to predict the perfor
mance of the environment just built. In order to help user interaction with the
clusters, PerfCloud offers a tunneling grid service that lets the users execute
commands on the target clusters. Moreover, PerfCloud offers a set of virtual
machine pre-configured images which can be adopted to set-up virtual clusters.
The images are ready-to-use cluster configuration enriched with all the software
needed to execute HPC applicat ions (compilers, MPI and OpenMP platforms,
Globus containers, job schedulers, . .. ).

PerfClou d Cllrnt

VC s erv rce

Bench
Service

Simuldl lon
S,, ' YKe

1
I~-( Iu"te r FE

!,A N

l Phi_ieal Nod"

Tunnel
Service

PerrCloud VIrtu al Cha ler

Fig. 1. The PerfCloud architecture

In light of the above, the PerfCloud architecture can be subdivided into three
main components, as is shown in Fig. 1:

Services, which offer the PerfCloud functionali ties to the GRID environment .
The component implementation relies on a minimal set offour GRID services,
named VCService ,BenchService, SimulationService and TunnelService;

Images, which are the Virtu al Cluster Node images, containing all the software
needed to integrate the VC into the GRID environment (a GT conta iner) and
to offer services to the final user (a set of GS deployed on the VC container),
along with other software needed for applicat ion development and execut ion
(compilers, messaging libraries and run-time support, ... )

Client, which allows the final user to interact with the Cloud environment .

These components will be orderly dealt with in the next sections .



PerfCloud: Performance-Oriented Integration of Cloud and GRID 97

3 PerfCloud Services

The Services component is the core of the PerfCloud framework. It offers a min
imal set of services, which add (virtual) cluster management capabilities to the
GRID environment. The main service (VCService), which incorporates all the
functionalities needed to manage the virtual clusters , has specific requirements
(essentially, the Xen hypervisor) for the physical environment hosting the service.
In the following, we will present a brief description of the service functionalities.
The details about their implementation can be found in [10].

The VCService makes it possible to design a VC with the characteristics
required by the user (number of virtual nodes, number of virtual CPUs for virtual
node, network configuration , .. . ). It is important to point out that the physical
system (usually a cluster) hosting this service has to be able to manage virtual
machines, and so, in addition to the Globus workspaces, it requires the presence
of the Xen hypervisor. The VCService service generates a file description that
is used both for cluster creation and , possibly, for its successive simulation. It
creates a VC, i.e., starts up on the cloud a set of virtual machine images, and
allows to perform a performance evaluation of the newly created VC. This entails
executing a set of benchmarks and storing their outputs, which are successively
used for tuning the simulation model, evaluating the timing parameters typical
of the VC created by the user. Since the information needed for building up the
virtual cluster and the simulator configuration are similar , we defined an XML
cluster description (see [10]). As shown in Figure 1, the VCs that are created and
simulated in PerfCloud have the same organization of common physical clusters ,
i.e., they are composed of a Virtual Front-End (FE) ,which is the only node with
a public IP address, and a set of nodes (slave machines) connected to the FE
through a network (a private network built by means of Xen bridges) .

The BenchService runs benchmarks on the virtual clusters and collects the
results. The PerfCloud system provides a dedicated virtual image, which resides
on one of the available physical machines (typically, on a machine not used for
VCs). When this service is invoked, it starts up a wrapper Java runtime on the
target virtual cluster, which launches the benchmarks. The results are collected
on the Virtual FE of the virtual cluster, and successively returned to the service
caller which stores the performance figures obtained for future use.

The SimulationService offers to the user a simple interface for predicting
the performance of his application in a virtualized environment . The simulation
package provides two main services: (a) HeSSEService, which accepts as input
an application to be evaluated and returns the predicted response time; (b)
TuningService, which tunes the simulator configuration to the target virtual
cluster; it retrieves the simulator configuration from the VC resource, queries the
DB for the benchmarking results and starts up the automatic tuning procedure
to update the simulator configurations.

The TunnelService lets the user execute a given command on the target
cluster resource, returning the standard output as result . Note that only a
GRID-enabled user, i.e., a user owning a valid certificate, is able to execute the



98 V. Casola, M. Rak , and U. Villano

command. This service can be used as a base class for building up services from
existing commands .

4 PerfCloud Virtual Clusters

The GRID services provided by PerfCloud rely on the availability of a virtual
ization layer on the physical clusters . In our development environment, all the
physical clusters making up the GRID are configured using Rocks, a widely-used
cluster distribution based on Red Hat Linux.The latest version of PerfCloud was
tested on Rocks 5.1 with the Xen roll. The GRID middleware adopted is the
Globus Toolkit 4, with the customizat ions offered by the Rocks GRID roll and
a dedicated OpenCA cert ificat ion authority. To exploit the GRID environment
as basis for the cloud system, we adopted the GRID Virtual Workspaces version
Tp2 .2.

In order to let the above described architecture create virtual clusters, we
built a set of scripts able to manage (create , destroy, pause, . . . ) a set of virtual
machine images, pre-configured in order to define a cluster environment. The
previously described VCService accepts an XML description of the clusters and
invokes the script s in order to setup the Virtu al Cluster . The description lets
t he user choose the virtual cluster configurat ion and the distr ibution of virtu al
nodes on the physical cluster nodes.

The virtual nodes images reside on a cluster FE repositor y. When an user
asks for a new virtual cluster, the images are duplicated and assigned to him.
From that moment on, he can fully manage the virtual cluster through the GRID
Services and the PerfCloudClient .

The virtual clusters created by PerfCloud are Red Hat Linux systems , config
ured with a large set of common HPC tools (gnu compilers, MPI , OpenMP, PBS
and Globus). The virtual clusters are configured in order to communicate with
each other through a private (virtual) network based on xenbridge. Only the
virtual cluster FE has a public IP. The virtual clusters are preconfigured with a
Globus container , with a cert ificate valid for the PerfCloud Virtual Organization,
and host the TunnelService.

5 The PerfCloudClient

The cloud approach aims at offering the services of the GRID infrastructure
to a large number of users, not only to the specialized ones, as highlighted by
Shantenu Jha et al [6] . These consideration led us to develop a simple graphical
interface that makes the interaction with PerfCloud very user-friendly.

Nevertheless, the main requirement for such an interface is to be easily ex
tensible, in order to manage the continuous growth of new services, which will
be made available to end users. The PerfCloudClient is a simple metaclient,
presented as a tray icon. It is written in Java and so it is highly portable. The
PerfCloudClient offers many functionaliti es to access the GRID infrastructure



PerfCloud: Performance-Oriented Integration of Cloud and GRID 99

in a secure way (through the generation of a proxy certificate), to manage the
connection , as well as further utilities.

According to the above notes, the scenarios are divided into three main use
cases: Management of GRID Access and Connections, Management of PerfCloud
Services and User Utilities.

5.1 Management of GRID Access and Connections

As we build up the Cloud environment on the top of GRID systems, we need to
access to the GRID environment; the authentication procedure was developed by
adopting the CoG Kit [12] and allows to generate a proxy certificate , as shown
in Figure 2(a) .

The access to a GRID environment is possible if the the environment has al
ready been initialized and configured. As illustrated in Figure 2, the
PerfCloudClient offers a setup procedure that enables the user to choose be
tween the different GRID environments (the virtual organizations, top of the
screenshot in Figure 2(b) ), and possibly to launch the wizard for configuring
the credentials (the SetupCertificate button and the wizard in Figure 2(c) ).
When a GRID environment is available, it is possible to choose the cluster to be
accessed and to invoke the services.

oi:iJ
- GRID Authentication

Viewcontainer log

Options

m 5 ManageVC
Manage Benchmark

PerfCloud Analizer

Custom Command

About

Close

(a) (b)

.. {~-

~ -<-
~ _.
.. -"'-'"
1 --

(c)

Fig. 2. Virtual Organization Setup procedure

It is important to point out that the PerfCloudClient is able to manage
connections to multiple GRID environments (that offer PerfCloud services), and
it is able to create virtual clusters on all of them . Moreover, once a VC is created,
it appears in the list of the available clusters for the virtual organization in which
it has been created.

5.2 Management of PerfCloud Services

The graphical interfaces that manage services are based on a simple template.
This is composed of a set of buttons on the top of the window to invoke the
services methods , and of a text box which reports the services output.



100 V. Casola, M. Rak, and U. Villano

(a) (b)

Fig. 3. Management of Perleloud Services

As an example, let us consider the TunnelService, which allows a final user
to execute a command on the selected cluster resource. Figure 3(a) shows the
execution of the Is -al command on the target resource. Figure 3(b) shows
the results of a Log Viewer command that invokes a customized version of the
tunnel services and visualizes the log file of the Globus container.

5.3 User Utilities

Finally, the PerfCloudClient offers some user utilities th at can be executed
offiine. Useful tools can be the graphical analyzer for performance evaluat ion, or
t he graphical tool for the definition of virtual cluster configurat ions.

At the state of the art , the Performan ce Analyzer is the only user utility
available. It lets the user to build easily up graphical reports of the benchmarks
performed on the virtual clusters (see Figure 4).

~..
rcundrnp

I
I

/ '
- --'

•.,~.7.-_ ......-,..-..-
(a)

Fig.4. Analyzer User utility

6 Related Work - Cloud Technologies

(b)

The cloud paradigm appeared on the computing scene in 2005 with the Amazon
Elastic Compute Cloud (EC2) [1]. Then a large set of related technologies has



PerfCloud: Performance-Oriented Integration of Cloud and GRID 101

been developed. In commercial contexts, it is worth mentioning the IBMs Blue
Cloud, the Sun Microsystems Network.corn, the Microsoft Azure Services Plat
form, the Google App Engine and the Dell Cloud computing solutions . Most of
these commercial systems adopt proprietary solutions (such as the virtualiza
tion engine by VMWare), and relatively few details are available on the adopted
architectures. In the academic world, and especially in the HPC area , cloud
computing is in "competition" with the GRID model, as outlined in [6] .

The idea of GRID-Cloud integration and the adoption of virtualization tech
niques in GRID infrastructure was explored in research projects as Reservoir
[13], and in technologies as openNebula [14] and virtual workspaces [8,15], with
the derived cloud toolkit Nimbus[9] .

At the state of the art, examples of e-science clouds are beginning to emerge
[16,9,17,18]. They are based on the above-mentioned technologies and have ar
chitectures similar to the one presented in this paper , even if, at the best of the
authors' knowledge, none of them provides performance evaluation and predic
tion tools as services integrated in the architecture.

As regards the user interfaces, both Nimbus [9] and openNebula [14], the
prominent solutions for building e-science clouds, offer powerful clients. However,
these clients are command line-based and do not provide any graphical interface.

7 Conclusions and Future Work

In this paper we have presented the architecture of PerfCloud, which offerscloud
on-GRID functionalities integrated with a simulation environment able to pre
dict user application performance on the newly instantiated Virtual Clusters.
The architecture of PerfCloud makes use of existing GRID and virtualization
technologies to manage at low-level the virtual clusters , and integrates them in
the existing GRID, also providing a dedicated set of services able to offer perfor
mance prediction functionalities. A client with graphical interface presented as a
tray icon on the desktop makes interactions with users more straightforward and
user-friendly than in any other existing cloud-GRID integration environment.

The main contribution of our work is undoubtedly the possibility to evaluate
on-the-fly the performance of a given application on the particular VC received
from the cloud. This is of great importance in the HPC world, where there
is skepticism about the adoption of virtualization techniques because of the
introduced overheads. Our research aims at making the resulting performance
loss predictable. However, we think that the use of simple mechanisms to interact
with the GRID/cloud is also an added value, as it may contribute to a wider
diffusion of clouds in scientific and production environments .

As regards the evolution of our work, we will design services able to build
up VCs tailored to the user performance requirements. In other words, the user
will provide the application and the requested response time , and the system
automatically will build up a suitable cluster. This will make it possible for the
cloud to offer guarantees about the quality of service and to negotiate SLAs.



102 V. Casola, M. Rak , and U. Villano

Acknowledgement. We wish to thank Raffaele Lettiero and Angelo Santillo
for the technical efforts. This work has been supported by LC3 -Lab. Pubblico
Privato di ricerca sul tema della comunicazione delle conoscenze culturali- Nat .
Proj ect of MIUR DM1791 and by Magda una piattaforma ad agenti mobili per
il Grid Computing, L.R. Campania n. 05 28/03 /2002.

References

1. Amazon Inc.: Elastic compute cloud (2008), http://aws .a.mazon.com/ec2
2. Barh am, P., et al.: Xen and the art of virtu alization. SIGOPS Oper . Syst . Rev. 37,

164-177 (2003)
3. W:MWare Staff: Virtualization overview (White Pap er) , http ://www.vmware .com
4. Foster, LT.: Globus toolkit version 4: Software for service-oriented systems. J .

Comput . Sci. Technol. 21, 513-5 20 (2006)
5. Laure, E., et al.: Programming th e Grid with gLite . Technical Report EGEE-TR

2006-001 , CERN, Geneva (2006)
6. Jh a, S., Merzky, A., Fox, G.: Using clouds to provide grids with higher-levels of

abstract ion and explicit supp ort for usage modes . Concurr . Comput .: Pract . Ex
per. 21, 1087-1108 (2009)

7. Cherkasova, L., Gup ta, D., Vahdat , A.: Optimizing grid site manager performance
with virtual machines. In : Proc. of the 3rd USENIX Workshop on Real Large
Distributed Systems, WORLDS 2006 (2006)

8. Keahey, K., Foster, LT. , Freeman , T., Zhang, X.: Virtual workspaces: Achieving
quality of service and quality of life in th e grid . Scientific Progr 13, 265- 275 (2005)

9. University of Chicago: Nimbus project (2009),
http ://workspace.globus .org/clouds/nimbus.html

10. Mancini, E.P., Rak , M., Villano , U.: PerfCloud: GRID Services for Performance
Oriented Development of Cloud Computing Applicat ions. In: Proc . of WETICE
2009, pp . 201-2 06. IEEE, Groninger (2009)

11. Mancini, E., Mazzocca, 1'. , Rak, M., Villano , U.: Int egrated tools for performance
oriented distributed software development. In: Proc. SERP 2003 Conf., USA, vol. 1,
pp. 88-94 (2003)

12. von Laszewski, G., Foster, LT ., Gawor, J ., Lane, P.: A java commodity grid kit .
Concurrency and Computation: Practice and Experience 13,645- 662 (2001)

13. Reservoir Consortium: Reservoir project (2009),
http ://www03.ibm.com/press/us/en/pressrelease/23448.wss

14. Distributed Systems Architecture Research Group : Opennebula project . Technical
report , Universidad Complut ense de Madrid (2009), http ://www.opennebula .org

15. Keahey, K., Foster , LT ., Freeman , T ., Zhang , X., Galron, D.: Virtual workspaces
in the grid. In: Cunha, J .C., Medeiros, P.O. (eds.) Euro-Par 2005. LNCS, vol. 3648,
pp. 421-4 31. Springer , Heidelberg (2005)

16. Purdue Universit y: Wispy project (2009),
http ://www.rcac .purdue.edu/teragrid/resources/#wispy

17. Masaryk University: Kupa project (2009),
http ://meta.cesnet .cz/cms/opencms/en/docs/clouds

18. \Vang, 1. , Tao, J ., Kunze, M., Castellanos, A.C., Kramer, D., Karl , W.: Scientific
cloud computing: Early definition and experience (2008)



Combining Cloud and Grid with a User Interface

Jiaqi Zhao l , Jie Ta02 , Mathias Stuempert/, and Moritz Post"

1 School of Basic Science, Changchun University of Technology, P.R. China
2 Steinbuch Centerfor Computing, Karlsruhe Instituteof Technology, Germany

jie.tao@iwr.fzk.de
3 Innoopract Informationssysteme GmbH, Karlsruhe, Germany

Abstract. Increasing computing clouds are delivered to customers. Each cloud,
however, provides an individual, non-standard user interface. The difference in
cloud interfaces must burden the users when they work with several clouds for
acquiring the services with expected price. This paper introduces an integrated
framework that can be usedby cloudusers to access the underlying services in a
uniform, cloud-independent manner. Theframework is anextention of a graphical
griduser interface developed withinthe g-Eclipse project. The goal of building a
clouduser interface on top of a grid interface is to combine cloudsandgrids into
a singlerealm, allowing an easy interoperation between the two infrastructures.

1 Introduction

Since Amazon announced its computing cloud EC2 [1] and storage cloud S3 [2], cloud
computing becomes a hot topic. As a consequence, a number of cloud infrastructures
have been established, both for commercial and research purpose . Examples are Google
App Engine [13], Microsoft Live Mesh [IS] , Nymbus[8], Cumlus [16], Eucalyptus [5],
and OpenNybula [4]. Currently, most of the cloud projects focus on Infrastructure as a
Service and Software as a Service, but we are sure that other topics, such as Software
as Platform as a Service and HPC as a Service, will be addressed in the near future .

Actually, cloud computing is not a completely new concept. It has similar features
with grid computing. A detailed compari son between these two paradigms can be found
in [II]. Grid computing has been investigated for thirty years. Many grid infrastruc
tures, especially those at the international level, were well established. Hence, cloud
computing will not replace grid computing; rather it provides the user community with
additional computing platforms.

Grid computing has ever faced a problem : different middlewares have own require 
ment for accessing the infrastructure . This problem was solved by building an ab
stract layer to hide the middleware-specific implementation [7,14]. Cloud computing
has the same problems. Currently, each cloud offers a different user interface, mostly
command-line, requiring the user to install their client software and learn how to use
the commands to request the services .

Our solution is an integrated, intuitive platform that can be used as a generic , stan
dard interface to access any cloud. Users see an identical view, no matter which cloud
is accessed . Furthermore, the interface uses graphical presentation, which is easier to
operate than command-line options. Besides serving as a cloud interface, the platform

D.R. Avresky et aI. (Eds.): Cloudcomp2009, LNICST 34, pp. 103-111,2010.
© Institutefor ComputerSciences, Social-Informatics and Telecommunications Engineering2010



104 1. Zhaoet al.

is also a bridge to connect the cloud with the grid . In this case, we build the cloud user
interface on top of an existing grid framework that was developed within the g-Eclipse
project.

g-Eclipse [7, to) aims at providing a generic framework that allows users to access
the power of the existing grid infrastructures via a standardized, customizable, and intu
itive interface. This framework is designed for all grid users, operators, and application
developers . Grid users can interact with grid resources in a simple, graphical way with
out having to know the technical details . For example , files can be transferred across
grid sites by drag&drop; job submission needs only a mouse click. Resource providers
can use the intuitive tools to operate and maintain the grid sites, manage the virtual orga
nizations, and perform benchmarking. Application developers reduce the development
cycle with the g-Eclipse support of remote building and deployment tools.

g-Eclipse is designed to support users of various virtual organizations. It uses a lay
ered infrastructure with middleware-independent interfaces and middleware specific
functionalities. Currently, standard middleware functionalities are provided.

This work extends g-eclipse with a cloud-independent infrastructure, including edi
tors and views for service presentation and templates for supporting cloud programming
models. Based on this infrastructure, various cloud platforms can be connected to the g
Eclipse framework with an individual implementation for accessing the specific cloud.
This paper describes the design of the cloud infrastructure and the connection to the
Amazon EC2 as an example.

The remainder of the paper is organized as following . Section I first gives an intro
duction to the g-Eclipse framework . This is followed by the concept and design of an
integrated cloud user interface in Section 3. Section 4 describes our initial implemen
tation of the proposed concept with EC2 and demonstrates how to access this cloud
via the extended g-Eclipse framework . The paper concludes in Section 5 with a brief
summary and several future directions.

2 g-Eclipse: Building a Framework to Access the Power of the
Grid

The g-Eclipse framework was originally designed to provide a high-level abstraction
for accessing grid infrastructures based on traditional grid middleware systems such as
gLite [6) or GRIA [9). It is build on top of the well-known Eclipse framework [12)
and makes extensive use of its design-patterns. The abstraction layer - called the Grid
Model - unifies the structure and functionality of grids in a set of well defined Java
interfaces. Basic implementations of these interfaces for generic functionalities, as well
as a UI layer, are provided to present and access underlying infrastructures in a stan
dardized way. On top of these core parts, middleware specific implementations of the
Grid Model can be plugged-in. This so called implementation layer enables the access
to infrastructures based on the corresponding middlewares.

So far the g-Eclipse project has integrated two different middlewares, i. e. gLite
which focuses on the scientific user and GRIA which targets industry and commerce.
The current gLite implementation covers all use-cases foreseen in the Grid Model.
Therefore, this part may be seen as finalized. The GRIA implementation is in an early



Combining Cloudand Gridwith a User Interface 105

. ~ . :-.........
tI . m.~N__

• ...:tJ~-CIlI'tftti m.....IN-......

.,...-.r.n'q~ ...~.f7
~f'lttot>.ulrl"'tdoon;Sl_.--

~ llith~~ ·

:.: ....... " fWJftpd ·C

~.IQcA:_r7'q;r.Jl'Gft... ,.,P"~I"" ..~r.
",Wafj'1w~m.-n

1 .... Tlw....,,~'ho1Cdula'lr<h_.
......... Ona'tet./105D~

~r(II"""'1

-
".-. ---'''''"'''• Oa ' :"' 1~0'6... l'I lJl'dN"..;Il'''OtCI~

• Oa . ~}#':l ~ohdrl1 t~:lI'...~

• Oa . ~~ It6a.2t l ll'dN' ;Il' 'OOCI~

· a.~~.211"'*'~~
· oa,,, ........:t...,~_~
oa ' 3M qc~'« ~J ':11 -t....,.,..
oa '~l~.tw~

·oa.~:~ •.tM~
· a'~'*-*~ I'~.. l:Po_
· o a .~ .... r.: ~~
· o a , l9I't«:u .nh ..- :u ~
· oa.wafl3l.. I1 :i1........
· oa . -u ~. Z1 :~

,"",ft

• "" :;10 "

...
' ''~
.._,

• ' 1iI:AII.O. '-
~~~--" ..-t_..

• J :'IdI

• J:~

- ~-

·1 • ~. I ---J

Fig.1. Screenshot of theg-Eclipse user interface

state and mainly covers the grid user's use cases. Further development, e.g. for Globus
Toolkit 4, is currently ongoing.

Fig. I shows a screenshot of the g-Eclipse framework for grid users. The left column
of the platform is a Grid Project view where all projects created by the user are depicted.
Project is a fundamental concept in g-Eclipse. It is the interface for any grid operations.
Hence, a project has to be created before any action can be invoked.

The concrete view in Fig. 1 contains four projects where the last one, with the name
of g-Eclipse, was expended. Each project consists of several folders for storing tempo
ral files and for presenting information, For example, all established grid connections
can be found in the folder "Connection". The lower window on the right side of Fig. I
depicts the contents of this folder. The three connections are built for different ma
chines to transfer data. Files can be moved from one machine to another by drag&drop.
The folder "Job Description" holds all job descriptions that define computing tasks.
A job description file can be simply created using a multi-editor shown on the upper
side of the right column of Fig. I. Users need only specify the executables and param
eters, a job description with the grid standard is created automatically. The jobs can
be submitted with a mouse click and the results are demonstrated in the folder "Jobs".
The last folder is a specific one showing the VO related information, including the

106 1. Zhao et al.

deployed applications, the computing and storage resources, as well as the available
services.

Overall, g-Eclipse builta platformallowing an easy access to grid infrastructures. It
also integrated tools for supportapplication development. More importantly, it enables
an interoperation betweendifferentgrids.Therefore, we selectthis platform as the base
for an intuitive, unified cloud user interface.

3 A Cloud Framework Based on g-Eclipse

We intend to develop a cloud user interface like g-Eclipse for the grid. The interface
provides basic functionalities for accessing a scientific cloud. This includes facilities
for authority and authentication, for data management, for servicedeployment, and for
accesses to the computing resources and services. It also containstools for debugging
and visualizing applications, for benchmarking, and for resourcemanagement.

Following the g-Eclipsearchitecture, the cloudinterface containsa core anda c1oud
specific implementation, where the core plug-insprovidethe basic functionality to ac
cess a cloud platform. For this, an extension of the g-Eclipsecore is essential to define
interfaces for cloud specific functionality, e.g. cloudservices.

In a cloudworld,everything is observedas a service: hardware is a service, software
is a service, and infrastructure is a service. Therefore, a cloudaccessinterface mustsup
port the presentation, request,and deployment of services. The following components
are required:

- A multi-layereditor for users to specifyservicerequest.
A cloud service is combinedwith various parameters. Different serviceshavealso
individual formation of the parameters. For example, CPU frequency and memory
size are typicalspecifications for a hardware service,whileversionnumberandfile
size are parameters to describe a softwarepackage. The multi-layer editor allows
the user to describethe requested services in detail.

- A viewfor showing the available services.
The service view will be designed and implemented for presenting the services
which are available in a cloud or requestedby the users.

- An editor for servicedeployment and publication.
Cloud developers or resourceproviders need an interface to describenew services
and thenpublishthem.Again,servicerelatedmetrics andSLAvaluesare necessary
parameters. An editorwill be providedfor this task.

In addition, cloud computing has its own programming languages and models. Cur
rently, MapReduce [3] is regardedas an adequateparadigm for writing cloud applica
tions. It can be expected that more modelswill be designedin the future. Weintend to
develop templates to supportapplication developers, with an initial implementation for
MapReduce.

The functionalities listed aboveare common for all clouds.They form the base for
accessing any cloudwith g-Eclipse. Additionally, a specific implementation is required
for each differentcloud to cover its individual feature, in the same way that g-Eclipse
handlesdifferentgrid middlewares. The development work is currentlyon-going.

Combining Cloud and Grid with a User Interface 107

4 An Initial Implementation: Access the Amazon Web Service

For verifying our concept of building a cloud framework using g-Eclipse, we first ex
tended this grid user interface with several cloud related components with respect to the
Amazon Web Services. We then implemented additional plug-ins for accessing EC2.
Theses plug-ins are responsible for handling AWS specific issues, such as accounting,
running machine image, and logging in a machine.

AWS VO

AWSVO

Specify the <>ttrlbutes of your AWS VO

vo 5eUino<

YO N.ame :

AWS Acce ss 10 :

AWS VO

Ser"lices

Service

EI~stic Compute Cloud (EC2)
Simple StoraQe 5er vice (53)

URL

https://ec2.~"",zonaws .com/

htt ps ://s3 ."JJl4ZOOaws.com/

1

< l!«k Einish I I Canc el

Fig.2. Screenshot of the YO wizard for creating an AWS YO

In the grid world, any user must be a member of a virtual organization (VO). To
access a grid infrastructure with g-Eclipse, a VO has to be created or imported . Cloud
computing does not apply the VO concept. However, we make use of this concept in
the AWS implementation in order to specify the endpoints for accessing an underlying
cloud infrastructure. A screenshot of the wizard for creating an AWS VO is shown in
Fig.2.

As shown in the figure, the VO wizard allows users to define a VO which can be later
used to create a project. The user has to specify the name of the VO, the AWS access
identifier, and the access points to the underlying clouds. This wizard is implemented
for AWS, but can be directly applied for accessing other similar clouds, for example,
Eucalyptus.

To use the Amazon cloud services, a user has to provide a secrete 10. This issue is
solved in g-Eclipse by reusing its Authentication Token that is actually designed for
grid authentication.

Fig. 3 shows the wizard for creating such a token. As can be seen, users can give
their AWS credentials using this wizard. g-Eclipse then uses these credenti als to create
tokens and relies on the tokens to interact with the cloud for authenticati on.

108 J. Zhaoet al.

Create n ew a uthen tication token

Provide authentICation credentials

Am4zon Web Service Credentials

Access 10 :

Secret 10 :

® r , Einlsh I I Cancel

Fig.3. Screenshot of the wizard for creating an authentication token

As mentioned in Section I, g-Eclipse uses the project concept for grid actions. This
concept is reused for cloud operations . By creating a project bound to a cloud YO a
user is able to query and access his personalized resources that are available from the
specified cloud services .

Fig. 4 is a screenshot of an AWS project on g-Eclipse, where the YO folder is ex
panded. It can be seen that the cloud resources, like the Amazon machine images (AMI),
are presented in the service subtree of the project's YO. These AMIs are listed in sepa
rate folders for distinguishing those owned by the user and those accessible to the user.
Furthermore, the user's security groups can be managed within this tree.

From context menu actions a user is able to start instances of these AMIs by cre
ating an Eclipse launch configuration. Fig. 5 shows the corresponding launch dialog
that allows the user to specify various parameters such as the type and the number of
instances to be launched . In addition, from this dialog it is possible to specify a payload
file that is uploaded and made accessible to the running instances. This file is usually
used to parameterize these instances. Once one or more instances have been launched
they appear in the YO tree as computing nodes. These nodes may be accessed by using
the integrated SSH console that is part of g-Eclipse.

After an instance is launched g-Eclipse offers the possibility to access this machine
via a SSH shell. In order to use this connection method, the security group used to
launch the AMI has to open the port 22 (ssh default port). Because the ssh connection
method uses the Eclipse connection infrastructure, the ssh private key has to be inserted
into the list of available keys. The running instances can be connected using an action in
the context menu. This action opens the SSH login data dialog with the correct external
DNS name inserted. The only parameter to be provided is the login name which is
"root". There is no need for a password, since it is contained within the ssh private key.
Fig. 6 shows a sample dialog.

Combining Cloudand Gridwitha User Interface 109

.'1Grid Projects 1;l

AWSPro)e(t

" Conne<bOnS

~ JobDesc'QtlOns
Jobs

- • AWSVO

...C~

5ervices

• 12> ElIlsbcIPs
- iO lrMQes

AJ I~s

MyAccessbleI~s
....817590e6(

- .;, My Owned I~

...-.om716e(

.....32ida8Sb(
"";'59866230 (

_'~9cI(

4fTi-d59Z76bc (
_92768S(

• lO Keypai'.

• iC' 5ecur~y Gr~
• 18 StCO'aQO

(IMQO.mantest.xmI)

(lMQO.mantest.xmI)

(lMQO.mantest,xrrl)

(lfM9O.mantest,xrrl)

(1MQO.rn¥1fest,xrrI)

(1fM9O.rn¥1fest .xrrI)

Fig.4. Screenshotof a projectview withEC2

~l ornl· 3 Z1d.o eSb

IM~ 1=>.,..rnetOf'" ~ t:on-.rnon
A W5 Credcontiels

A~ ~~e IO:

AIn/Uon f'rot..Khlno lrn.eQe SotUnqs

AMI 10 : .cIlfl"lt93,Z 1dae5b

I~ COI'o f loguratkJn

I~tWM:e Typo : $nl.oI I~OOI;o (m 1 . srrwd)

'5eoeurlty GrOUPS I

Zone:

Mn• • M a J(I I

Fig.5. Screenshot of the launchconfiguration dialogfor launching an AWS machine image

110 1.Zhaoet a!.

- 55H

SSH

Erteryt» al1txJrizatOO data.

Host 1I<lI1le: i ec2·7S-I0 1 ·226-I03,c~e-l.lJII'IaZonaws,com v Pllrt: 22

UserIl<ll1le :~ :v]
Password:

? Next > II Fnsh II (fie! I

Fig. 6. Screenshot of the SSH login wizard

The Amazon S3 service is integrated as an EclipseFile System implementation. The
VO subtree of an AWS project lists the correspondingbucketsas storage. From these
storage itemsa user is able to mountthese bucketsas connections. Suchconnections ap
pear afterwards in the Connections folderof the project and may be accessed within the
project, in the same way of accessing any other folder (local or remote). Files located
in these connections may be copied across differentconnections or just opened,edited
and saved on the fly. The underlying g-Eclipse layer for managing EFS implementa
tions ensures interoperability between all available EFS implementations. Therefore,
file transfers betweenS3 and any other EFS implementation is straight-forward.

Overall, we havemade it possible to access the Amazonclouds using g-Eclipse with
a slight extension of its core architecture and a specific implementation for AWS. This
achievement allows the user not only to access the clouds in an easier way but also to
move their data across grids and clouds.

5 Conclusion

Cloudplatformsareemerging. Differentcloudsalso offerdifferentclient side interfaces
that are mainly based on command-line designs. To hide the details of cloud client
implementations, a generic user interfaceis required.

This workaimsat developing such an interfaceto bothallowcloudusers to accessthe
underlying infrastructures in a unified, graphical way and build a bridge betweengrid
and cloud. The interface is an extension of an existing grid framework developedwithin
the g-Eclipse project. To verify our concept, an initial implementation with respect to
the Amazon Web Services has been completed. Currently, theentire cloud infrastructure
is under development. Furthermore, implementations for connecting other cloud are
also planned.

CombiningCloud and Grid with a User Interface 111

References

1. AmazonWebServices. AmazonElasticComputeCloud (AmazonEC2),
http : / /aws.amazon.com/ec2 /

2. AmazonWebServices. AmazonSimpleStorageService (AmazonS3),
http: / /aws.amazon.com/s3 /

3. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processingon Large Clusters. Com
munications of the ACM51(I), 107-113 (2008)

4. Sotomayor, B., et al.: CapacityLeasingin Cloud Systemsusing the OpenNebula Engine. In:
Proceedings of CCA 2008 (2008)

5. Nurmi,D., et al.: The EucalyptusOpen-source CloudComputingSystem.In: Proceedings of
CCA 2008 (2008)

6. Laure, E., et al.: Programming the Grid with gLite. Computational Methods in Scienceand
Technology 12(1),33-45 (2006)

7. Kornmayer, H., et al.: gEclipse- An Integrated, Grid Enabled Workbench Tool for Grid Ap
plication Users, Grid Developers and Grid Operators based on the Eclipse Platform. In:
Proceedings of the 2nd Austrian Grid Symposium, Innsbruck, Austria (September 2006),
http: / /www.geclipse .eu /

8. Keahey, K., et al.: Science Clouds: Early Experiences in Cloud Computing for Scientific
Applications. In: Proceedings of CCA 2008 (2008)

9. Surridge, M., et al.: Experiences withGRIA- Industrialapplications on a WebServicesGrid.
In: E-SCIENCE2005: Proceedings of the First International Conference on e-Scienceand
Grid Computing, pp. 98-105 (2005)

10. Wolniewicz, P., et al.: Accessing Grid computing resources with g-Eclipse platform. Com
putationalMethodsin Scienceand Technologie 13(2), 131-141 (2007)

II. Foster, LT., Zhao, Y., Raicu, L, Lu, S.: Cloud Computing and Grid Computing 360-Degree
Compared. In: Grid Computing EnvironmentsWorkshop, pp. 1-10 (2008)

12. Gamma,E., Beck, K.: Contributing To Eclipse: Principles,Patterns, And Plug-Ins. Addison
Wesley Professional, Reading (2003)

13. Google. GoogleApp Engine,
http: / /code.google.com/intl /de -DE/appengine /

14. Malawski, M., Bartyriski, T., Bubak,M.: A Tool for BuildingCollaborative Applications by
Invocation of Grid Operations. In: Bubak,M., van Albada, G.D., Dongarra, 1., Sioot, P.M.A.
(eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 243-252. Springer, Heidelberg (2008)

15. Microsoft. Live Mesh, ht tps : / / www .me s h . com/we l come/defaul t . aspx
16. Wang, L., Tao,1., Kunze,M.: Scientific CloudComputing: Early Definition and Experience.

In: Proceedings of the 2008 International Conference on High Performance Computingand
Communications (HPCC2008),pp. 825-830 (2008)

Cloud Computing Infrastructure

Track Session 3

A Performance Analysis of EC2 Cloud
Computing Services for Scientific Computing

Simon Ostermann1, Alexandru Iosup'' , Nezih Yigitbasi", Radu Prod an 1,
Thomas Fahringer", an d Dick Eperna/

1 University of Innsbruck, Austria
simon~dps.uibk .ac .at , radu~dps . u ibk . ac . at, tf~dps.uibk .ac .at

2 Delft University of Technology, The Netherlands
A .losup~tudelft .nl , M .N.Yigitbasi~tudelft .nl , D .H . J .Epema~tudelft .nl

Abstract. Cloud Computing is emerging today as a commercial infras
truc ture that eliminates the need for maintaining expensive computing
hardware. Through the use of virtualization, clouds promise to address
with the same shared set of physical resources a large user base with dif
ferent needs. Thus, clouds promise to be for scientists an alternative to
clusters , grids, and supercomputers. However, virtualization may induce
significant performance penalties for the demanding scientific computing
workloads. In this work we present an evaluation of the usefulness of the
current cloud computing services for scientific computing. We analyze
the performance of the Amazon EC2 platform using micro-benchmarks
and kernels.While clouds are st ill changing, our results indicate that the
current cloud services need an order of magnitude in performance im
provement to be useful to the scientific community.

1 Introduction

Scient ific comp uting requires an ever-increas ing numbe r of resources to deliver
results for growing problem sizes in a reasonable t ime frame. In t he last decade,
while t he largest research projects were able to afford expensive supe rcompute rs,
ot her projects were forced to opt for chea per resources such as commodity clus
ters and grids . Cloud computing pro poses an alternative in which resources are
no longer hosted by t he researcher 's computatio na l facilit ies, but leased from big
dat a centers only when needed. Despite t he existence of several cloud comput ing
vendo rs , such as Amazon [4J an d GoGrid [13], the potenti al of clouds remains
largely unexplored . To address t his issue, in this paper we present a performance
analysis of cloud computing services for scienti fic comp uting.

The cloud computing par adigm holds good pro mise for the perform ance
hungry scient ific community. Clouds promise to be a chea p alte rnat ive to super
computers and specialized clust ers, a much more reliable platform t ha n grids,
and a much more scalable platform t ha n t he largest of commodity clusters or
resource poo ls. Clouds also promise to "scale by credit card, " t ha t is, sca le up
immediately and te mpora rily wit h the only limits imposed by financial reasons,

D.R. Avr esky et a l. (Eds.) : Cloudc om p 2009 , LNICST 34 , pp. 115- 131 , 2010.
© In stitut e for Co mputer Sci ences, Social-Info rmatics and Te lecommun ications En ginee rin g 2010

116 S. Ostermann et al.

Table 1. A selection of cloud service providers. VM stands for virtual machine, S for
storage .

Service type Examples
VM,S Amazon (EC2 and 83), Mosso (+CloudFS) , ...
VM GoGrid , Joyent , infrastructures based on Condor

Glide-in [28]/Globus VWS [121/Eucalyptus [21], ...
S Nirvanix, Akamai, Mozy, ...
non-IaaS 3Tera, Google AppEngine, Sun Network, ...

as opposed to the physical limits of adding nodes to clusters or even supercom
puters or to the financial burden of over-provisioning resources. However, clouds
also raise important challenges in many areas connected to scientific computing,
including performance , which is the focus of this work.

An important research question arises: Is the performance of clouds sufficient
for scientific computing? Though early attempts to characterize clouds and other
virtualized services exist [33,10,23,29], this question remains largely unexplored.
Our main contribution towards answering it is:

1. We evaluate the performance of the Amazon Elastic Compute Cloud (EC2),
the largest commercial computing cloud in production (Section 3);

2. We assess avenues for improving the current clouds for scientific comput
ing; this allows us to propose two cloud-related research topics for the high
performance distributed computing community (Section 4).

2 Amazon EC2

We identify three categories of cloud computing services: Infrastructure-as-a
Service (IaaS) , that is, raw infrastructure and associated middleware, Platform
as-a-Service (PaaS) , that is, APls for developing applications on an abstract
platform, and Software-as-a-Service (SaaS), that is, support for running software
services remotely. The scientific community has not yet started to adopt PaaS
or SaaS solutions , mainly to avoid porting legacy applications and for lack of
the needed scientific computing services, respectively. Thus, in this study we are
focusing on IaaS providers.

Unlike traditional data centers , which lease physical resources, most clouds
lease virtualized resources which are mapped and run transparently to the user
by the cloud's virtualization middleware on the cloud's physical resources. For
example, Amazon EC2 runs instances on its physical infrastructure using the
open-source virtualization middleware Xen [7] . By using virtualized resources
a cloud can serve with the same set of physical resources a much broader user
base; configuration reuse is another reason for the use of virtualization. Scientific
software, compared to commercial mainstream products, is often hard to install
and use [8] . Pre- and incrementally-built virtual machine (VM) images can be
run on physical machines to greatly reduce deployment time for software [20].

A Performance Analysis of EC2 Cloud Computing Services 117

Table 2. The Amazon EC2 instance types. The ECU is the CPU performance unit
defined by Amazon.

::-i'ame ECUs RAM Archi I/O Disk Cost Reserve Reserved Cost
(Cores) [GB] [bit] Perf. [GB] [$/h] [$/y], [$/3y] [$/h]

m1 .small 1 (1) 1.7 32 Med 160 0.1 325,500 0.03
ml.large 4 (2) 7.5 64 High 850 0.4 1300,2000 0.12
m1.xlarge 8 (4) 15.0 64 High 1690 0.8 2600,4000 0.24
c1.medium 5 (2) 1.7 32 Med 350 0.2 650, 1000 0.06
c1.xlarge 20 (8) 7.0 64 High 1690 0.8 2600, 4000 0.24

Many clouds alread y exist , but not all provide virtualization , or even comput
ing services. Table 1 summarizes th e characteristics of several clouds currently
in production; of these, Amazon is the only commercial IaaS provider with an
infrastructure size th at can accommodate ent ire grids and parallel production
infrastructures (PPI) workloads.

EC2 is an IaaS cloud computing service th at opens Amazon's large com
puting infrastructure to it s users . The service is elastic in the sense that it
enab les the user to extend or shrink his infrastructure by launching or terminat
ing new virtual machines (instances). The user can use any of the five instance
types current ly available on offer , th e characteristics of which are summarized in
Table 2. An ECU is the equivalent CPU power of a 1.0-1.2 GHz 2007 Opteron or
Xeon processor . The theoretical peak performance can be computed for different
instances from the ECU definition: a 1.1 GHz 2007 Opteron can perform 4 flops
per cycle at full pipeline, which means at peak performance one ECU equa ls 4.4
gigaflops per second (GFLOPS) . Inst ances can be reserved in advanced for one
or three years per location which results in a lower hourly cost let t ing user with
long usage periods benefit in a subscription way.

To create an infrastructure from EC2 resources, the user first requires the
launch of one or several instances, for which he specifies the instance type and
the VM image; the user can specify any VM image previously registered with
Amazon, including Amazon's or the user's own. Once th e VM image has been
transparently deployed on a physical machine (the resource st atus is running),
the instance is booted; at the end of the boot process the resource status be
comes installed. The installed resource can be used as a regular comput ing node
immediately after th e booting process has finished, via an ssh connection . A
maximum of 20 instances can be used concurrently by regular users; an appli
cation can be made to increase this limit . The Amazon EC2 does not provide
job execution or resource management services; a cloud resource management
system can act as middleware between th e user and Amazon EC2 to reduce re
source complexity. Amazon EC2 abides by a Service Level Agreement in which
the user is compensated if the resources are not available for acquisition at least
99.95% of the time, 365 days/ year . The security of the Amazon services has been
investigated elsewhere [23].

118 S. Ostermann et al.

Table 3. The benchmarks used for cloud performance evaluation. B, FLOP, U, MS,
and PS stand for bytes, floating point operations, updates, makespan, and per second,
respectively. The other acronyms are described in the text.

Type Suite/ Benchmark Resource Unit
SJSI 1mbench/ all Many Many
SJSI Bonnie/ all Disk MBps
SJSI CacheBench/ all Memory MBps
SJMI HPCC/HPL CPU, float GFLOPS
SJMI HPCC/DGEMM CPU, double GFLOPS
SJMI HPCC/STREA),l Memory GBps
SJMI HPCC/ RandomAccess Network MUPS
SJMI HPCC/b e f f Memory tis , GBps

3 Cloud P erformance Evaluation

In this section we present a performance evaluation of cloud computing services
for scienti fic computing.

3.1 Method

We design a performance evaluation method , that allows an assessment of clouds.
To this end, we divide the evaluation procedure into two par ts, t he first cloud
specific, the second infrastructure-agnostic.

Cloud-specific evaluation. An attractive promise of clouds is that t here are
always unused resources, so that t hey can be obtained at any time without addi
tional wait ing t ime. However, t he load of ot her large-scale systems (grids) varies
over time due to submission patterns; we want to investigate if large clouds can
indeed bypass this problem. Thus, we test the dur ation of resource acquisition
and release over short and long periods of time. For the short -t ime periods one
or more instances of the same instance type are repeatedly acquired and re
leased during a few minutes; the resource acquisition requests follow a Poisson
process with arrival rate ,\ = Is. For the long periods an instance is acquired
then released every 2 min over a period of one week, th en hourly averages are
aggrega ted from the 2-minutes samples taken over a period of one month.

In frastructure-agnost ic evaluation. The re currently is no single accepted
benchmark for scientific computing at large-scale. In particular , there is no such
benchmark for the common scientific computing scenar io in which an infras
t ruct ure is shared by several independent jobs, despite the large performance
losses that such a scenario can incur [5] . To address this issue, our method both
uses t rad itional benchmarks comprising suites of jobs to be run in isolation and
replays workload tr aces taken from real scientific comput ing environments .

We design two types of test workloads: SJSI /MJSI- run one or more single
process jobs on a single instance (possibly with mult iple cores) and SHU-run a

A Performance Analysis of EC2 Cloud Computing Services 119

Table 4. The EC2 VM images. FC6 stands for Fedore Core 6 as (Linux 2.6 kernel).

EC2 VM image Software Archi Benchmarks
ami-2bb65342 FC6 32bit Bonnie & LMbench
ami-36ffla5f FC6 64bit Bonnie & LMbench
ami-3e836657 FC6 & MPI 32bit HPCC
ami-e813f681 FC6 & MPI 64bit HPCC

single mult i-process jobs on multiple instances. The SJSI, MJSI, and SJMI work
loads all involve executing one or more from a list of four open-source bench
marks: LMbench [17], Bonnie [9], CacheBench [18], and th e HPC Challenge
Benchmark (HPCC) [15]. The characte rist ics of the used benchmarks and th e
mapping to the test workloads are summarized in Table 3.

Performance metrics, We use the performance metrics defined by the bench
marks used in thi s work. We also define and use the HPL efficiency for a real
virtual cluster based on instance type T as the rat io between th e HPL benchmark
performance of the cluster and the performance of a real environment formed
with only one instance of same type, expressed as a percentage.

3.2 Experimental Setup

We now describe the experimenta l setup in which we use the performance eval
uation method presented ear lier.

Environment. We perform all our measurements on the EC2 environment .
However, thi s does not limit our result s, as there are sufficient reports of per
forma nce values for all the Single-Job benchmarks, and in particular for the
HPCC [2] to compare our results with . For our experiments we build homoge
neous environments with 1 to 128 cores based on the five EC2 instance types.

Amazon EC2 offers a wide range of ready-made machine images. In our ex
periments , we used the images listed in Table 4 for the 32 and 64 bit instances;
all VM images are based on a Fedora Core 6 as with Linux 2.6 kernel. The VM
images used for the HPCC benchmarks also have a working pre-configured MPI
based on the mpich2-1. 0 .5 [31J implementation .

Optimizations, tuning. The benchmarks were compiled using GNU C/ C++
4.1 with the -03 - f unr oll- l oops command-line arguments . We did not use
any additional architecture- or instance-dependent optimizations. For the HPL
benchmark , the performance result s depend on two main factor s: th e Basic Lin
ear Algebra Subprogram (BLAS) [11] library, and the problem size. We used in
our experiments th e GotoBLAS [30J library, which is one of the best portable
solutions freely available to scientists . Searching for the problem size that can
deliver peak performance is extensive (and cost ly); instead , we used a free math
ematic al problem size analyzer [3] to find the problem sizes th at can deliver
results close to the peak performance: five problem sizes ranging from 13,000 to
55,000.

120 S. Oste rmann et at.

200

180

160

140

~
120

c:
.2 100
~
:::J
C 80

60

40

20

0

883 881

•I•
.l
T• I

1: t :
1

685
Ouartiles =:J

Median =:J
Mean c

putliers •

~
Q) Q) E Q)

E ~ ~ :::J ~

~ III '6 III
~ ~ Q) ~
E E E s uu

Total Time for
Res. Acquisition

VM Deployment Time VM Boot TIme for
for Res. Acquisition Res. Acquisition

Total Time for
Res. Release

Fig. 1. Resource acquisition and release overheads for acquiring single instances

3.3 Experimental Results

The experimental results of the Amazon EC2 performance evaluat ion are pre
sented in the following.

Resource Acquisition and Release. We study three resource acquisition and
release scenarios: for single instances over a short period, for multiple instances
over a short period, and for single instances over a long period of time.

Single instances. We first repeat 20 times for each of the five instance types a
resource acquisition followed by a release as soon as the resource status becomes
installed (see Section 2). Figure 1 shows the overheads associated with resource
acquisit ion and release in EC2. The total resource acquisition t ime (Total) is the
sum of t he Install and Boot t imes. The Release time is the ti me taken to release
the resource back to EC2; after it is released the resource stops being charged
by Amazon. The cl. * instances are surprisingly easy to obtain; in cont rast , the
ml .* instances have for the resource acquisition time higher expectation (63-90s
compared to around 63s) and variability (much larger boxes). With the exception
of the occasional out lier, both the VM Boot and Release times are stable and
represent about a quarter of Total each.

Multiple instances. We investigate next the performance of requesting the ac
quisition of multiple resources (2,4,8,16, and 20) at the same time; this

A Performan ce Analysis of EC2 Cloud Computing Services 121

120 ,-------------- ----------------,

T
o

o

40

:§:
c:
.2 60
1§
:J
a

80

100

Quart iles c::::=:J
Median c::::=:J

Mean =
Outliers •

20

O'-'-'-'-'-'-_ '-'-'-'-'-----:L-:L......:L......:L......:I:..-_ '-'-'-'-'-----l
2 4 8 16 20
Instance Count
Total Time for

Res. Acquisition

2 4 8 16 20
Instance Count

VM Deployment Time
for Res. Acquisition

2 4 8 16 20
Instance Count
VM Boot Time for
Res. Acquisition

2 4 8 16 20
Instance Count
Total Time for
Res. Release

Fig . 2. Instance resource acquisition and release overheads when acquiring multiple
c1.xlarge instances at the same time

corresponds to the real-life scenario where a user would create a homogeneous
cluster from Amazon EC2 resources. When resources are requested in bulk,
we record acquisition and release times for each resource in the request , sep
arately. Figure 2 shows the basic statistical properties of the times recorded for
c1.xl ar ge inst ances. The expectation and the variability are both higher for
multip le instances than for a single instance.

Long-term investigation. Last , we discuss the Install t ime measurements
published online by the independent CloudStatus team [1]. We have written
web crawlers and parsing tools and ta ken samples every two minutes between
Aug 2008 and Nov 2008 (two months). We find that the time values fluctuate
within the expected range (expected value plus or minus the expected variabil
ity). We conclude that in Amazon EC2 resources can indeed be provisioned
without addit ional waiting t ime due to system overload.

Performance of SJSI Workloads. In this set of experiments we measure
the raw performance of the CPU , I/ O, and memory hierarchy using the Single
Inst ance benchmarks listed in Section 3.1.

Compute performance. We assess the computational performance of each in
stance type using the entire LMbench suite. The performance of int and int64

122 S_Ostermann et al.

10

8

Ui
Q.
0
~

6

(1)
o
C
t'O
E...
.g
(1)
Q.

o

,....

r-r- ,....
:

" '7 ,....
"

r--,'

r- r- t--: r-r-
-,'

r- r- I

::
-,' .::', r-, "

'<~" i .:. -,'

x ,', In ','
:

r1 '-

INT64·bil _ INT64·mul =

ml .small

I T-bil =

ml .large ml ,xlarge

Instance Type
INT-add = INT·mul =

ct .medium cl ,xlarge

0 8

Ui
Q.
0
~

0,6

(1)
o
C
t'O
E 0,4...
.g
(1)

Q.

0,2

0

:':: n n 7: n :::
_. .. ,7 n .. r

rnt .srnau ml.large ml ,xlarge ct .meciem c1.xlarge

Instance Type
FLOAT·add = FLOAT-bogo = DOUBLE·mul =
FLOAT-mul = DOUBLE-add _ DOUBLE·bogo =

Fig. 3. LMbench results. The Performance of 32- and 54-bit integer operations in giga
operations per second (GOPS) (top) , and of floating operations with single and double
precision (bottom)

opera t ions, and of th e float and doub le float operations is depicted in Figure 3 top
and bottom, respectively. The GOPS recorded for the float ing point and double
operations is 6 - 8x lower than the theoretical maximum of E CU (4.4 GOPS).
Also, the double float performance of the ct ,* instances, argua bly th e most

A Performance Analysis of EC2 Cloud Computing Services 123

5GiB

cl .xlarge o
cl.medium ,.....;
ml .xlarge ,. ~ ..:
ml.large •• • ••
ml .small

~

._.....•.•.
" . 1- ~ ~

········o ·~ · · · · · · · ·+- · · · ···· ;;.-..•...•·"' .. "
I !\~ ~

I'" : '! '\... :
'w-- --- -t''--- '\. f

~t---____

O L------''-------'----'-- ----'------'------'---~..:..:.=~~jf::~
1024KiB 2MiB 5MiB 10MiB 20MiB SOMiB 100MiB 500MiBl000MiB 2GiB

Test File Size

x. 1400 .----------------------------,
....7ij'

E~ 1200
.c~
g ~ 1000
Cll-
.c~
Cll- 800. _ :J

§~ 600
Oro

IDc;::
2 ~ 400
'C ::J
:: CT 200
CllClla:(/)

Fig. 4. The results of the Bonnie Rewrite benchmark. The performance drop indicates
the capacity of the memory-based disk cache.

Table 5. The I/ O performance of the Amazon EC2 instance types and of 2002 [14]
and 2007 [6] systems

Seq. Output Seq. Input Rand.
Instance Char Block Rewrite Char Block Input

Type [MB/ s] [MB/ s] [MB/s] [MB/ s] [MB / a] [Seek / s]

ml.s mall 22.37 60.18 33.27 25.94 73.46 74.4
ml.large 50.88 64.28 24.40 35.92 63.20 124.3
m1.xlarge 56.98 87.84 33.35 41.18 74.51 387.9
c1.medium 49.15 58.67 32.80 47.43 74.95 72.4
c1.xlarge 64.85 87.82 29.96 44.98 74.46 373.9
'02 Ext3 12.24 38.75 25.66 12.67 173.68 -
'02 RAID5 14.45 14.32 12.19 13.50 73.03 .
'07 RAID5 30.88 40.63 29.03 41.91 112.69 192.9

import ant for scientific computing, is mixed : excellent addition but poor multipli
cation capabilities. Thus, as many scientific comp uting applications use heavily
both of t hese operations, the user is faced wit h the difficult problem of selecting
between two choices where none is optimal. Finally, several floating and double
point operations take longer on c i.medium than on mi. small.

I/O performance . We assess the I/ O performance of each instance type with
the Bonnie benchmarks, in two steps. The first step is to determine the smallest
file size that invalidates the memory-based I/O cache, by running the Bonnie
suite for thirteen file sizes in the range 1024 Kilo-binary byte (KiB) to 40 GiB.
Figure 4 depicts the resu lts of the rewrite with sequential output benchmark,
which involves sequences of read-seek-write operations of data blocks that are
dirtied before writing. For all instance types, a performance drop begins wit h the
100MiB test file and ends at 2GiB , indicating a capacity of t he memory-based
disk cache of 4-5GiB (twice 2GiB). Thus, the resu lts obtained for the file sizes

124 S. Ostermannet al.

e'
1MB32KB

ml .small - .
ml .large

ml .xlarge --.-
cl .medium ...A. _.

cl .xlarge ..

,, ~....................
_.AI' ".
~ ~.- \. \. ~..........

40000

35000

5000

30000

10000

Vi'
Cl-
eo 25000
~
Q)

g 20000
ro
E
.g 15000
Q)
o,

215 220

Working Set [B]

Fig. 5. CacheBench Rd-Mod-Wr benchmark results, one benchmark process per
instance

above 5GiB correspond to the real I/O performance of the system; lower filesizes
would be served by the system with a combination of memory and disk opera
tions . We analyze the I/O performance obtained for files sizes above 5GiB in the
second step ; Table 5 summarizes the results. We find that the I/O performance
indicated by EC2 (see Table 2) corresponds to the achieved performance for ran
dom I/O operations (column 'Rand. Input' in Table 5). The * .xlarge instance
types have the best I/O performance from all instance types . For the sequen
tial operations more typical to scientific computing all EC2 instance types have
in general better performance when compared with similar modern commodity
systems, such as the systems described in the last three rows in Table 5.

Memory hierarchy performance. We test the performance of the memory
hierarchy using CacheBench on each instance type. Figure 5 depicts the perfor
mance of the memory hierarchy when performing the Rd-Mod-Wr benchmark
with 1 benchmark process per instance. The ct ,* instances perform very similar,
almost twice as good as the next performance group formed by mi. xlarge and
mi. large; the mi. small instance is last with a big performance gap for working
sets of 217_219B. We find the memory hierarchy sizes by extracting the major
performance drop-offs. The visible LI /L2 memory sizes are 64KB/IMB for the
mi .* instances ; the ci .* instances have only one performance drop point around
2MB (L2). Looking at the other results (not shown), we find that L1 c i . * is only
32KB. For the Rd and Wr unoptimized benchmarks we have obtained similar

A Performance Analysis of EC2 Cloud Computing Services 125

~ 100

(i) 24 75

0..a
~...J

LL ~

Q. c-,
o

Q) 16 50 co Q)c ' (3co
E !E
.g w

Q)
0.. 8 25

o 0

L1NPACK Efficiency ['!oj -

2 4

Number of Nodes
UNPACKPerformance[GFLOPSj _

8 16

Fig. 6. The HPL (LINPACK) performance of mi.small-based virtual clusters

results up to the L2 cache boundary, after which the performance of mi .xlarge
drops rapidly and the system performs worse than ml . l ar ge. We speculate on
the existence of a throttling mechanism installed by Amazon to limit resource
consumption. If this is true, the performance of computing applications would
be severely limited when the working set is near or past the L2 boundary.

Reliability. We have encountered several system problems during the SJSI ex
periments. When running the LMbench benchmark on a cl. mediurn instance
using the default VM image provided by Amazon for this architecture, the test
did not complete and the instance became partially responsive; the problem was
reproducible on another instance of the same type . For one whole day we were no
longer able to start instances-any attempt to acquire resources was terminated
instantly without a reason. Via the Amazon forums we have found a solution
to the second problem (the user has to perform manually several account /setup
actions); we assume it will be fixed by Amazon in the near future.

Per formance of SJMI Wor kloads. In this set of experiments we measure
the performance delivered by homogeneous clusters formed with EC2 instances
when running the Single-Job-Multi-Machine (in our case Instance) benchmarks.
For these tests we execute the HPCC benchmark on homogeneous clusters of
size 1-16 instances.

HP L per for mance . The performance achieved for the HPL benchmark on
various virtual clusters based on the ml . small instance is depicted in Figure 6.

126 S. Ostermann et al.

Table 6. HPL performance and cost comparison for various EC2 instance types

Peak GFLOPS GFLOPS
Name Perf. GFLOPS / ECU / $1
m1.small 4.4 1.96 1.96 19.6
ml.large 17.6 7.15 1.79 17.9
m1.xlarge 35.2 11.38 1.42 14.2
c1.medium 22.0 3.91 0.78 19.6
c1.xlarge 88.0 49.97 2.50 62.5

Table 7. The HPCC performance for various platforms. HPCC-x is the system with
the HPCC ID x [2].

Peak Perf. HPL STREAM RandomAc. Latency Bandw.
Provider, System [GFLOPS] [GFLOPS] [GBps] [MUPs] [ps] [GBps]

EC2, m1.small 4.40 1.96 3.49 11.60 - -
EC2, ml.large 17.60 7.15 2.38 54.35 20.48 0.70
EC2, m1.xlarge 35.20 11.38 3.47 168.64 17.87 0.92
EC2, c1.medium 22.00 3.91 3.84 46.73 13.92 2.07
EC2, c1.xlarge 88.00 51.58 15.65 249.66 14.19 1.49
EC2, 16 x m1.small 70.40 27.80 11.95 77.83 68.24 0.10
EC2, 16 x c1.xlarge 1408.00 425.82 16.38 207.06 45.20 0.75
HPCC-228, 8 cores 51.20 27.78 2.95 10.29 5.81 0.66
HPCC-227, 16 cores 102.40 55.23 2.95 10.25 6.81 0.66
HPCC-224, 128 cores 819.20 442.04 2.95 10.25 8.25 0.68

The cluster with one node was able to achieve a perform ance of 1.96 GFLOPS,
which is 44.54% from the peak performance advertised by Amazon . For 16 in
st ances we have obtained 27.8 GFLOPS, or 39.4% from th e theoret ical peak and
89% efficiency. We further investigate the performance of t he HPL benchmark
for different inst ance types; Table 6 summa rizes the results. The c1 .xlarge
inst ance achieves good performance (51.58 out of a t heoretical performance of
88 GFLOPS, or 58.6%), but t he ot her instance types do not reach even 50% of
t heir theoretical peak performance. The low performance of c1 .medium is due to
t he reliability problems discussed later in this sect ion. Cost -wise, t he ct .xlarge
instance can achieve up to 64.5 GFLOPSj$ (assuming an already inst alled in
stance is present) , which is th e best measured value in our test . This instance
type also has in our test s t he best ratio between its Amazon ECU rating (column
"ECUs" in Table 2) and achieved perfor mance (2.58 GFLOPSjECU).

HPCC performance. To obtain t he performance of virtual EC2 clusters we
run the HPCC benchmarks on unit clusters comprising one inst ance, and on
16-core clusters comprising at least two inst ances. Table 7 summarizes the ob
t ained result s and, for comparison, results publi shed by HP CC for four modern
and similarly-sized HP C clusters [2]. For HPL, only t he perform ance of t he
c1 .xlarge is comparable to that of an HP C system. However, for DGEMM,
STRE AM, and RandomAccess t he perform ance of t he EC2 clusters is similar or

A Performance Analysis of EC2 Cloud Computing Services 127

200

180

20

unoptimized v hand-tuned (c1.xlarge x 1 process! - .
unoptimized v hand-tuned (c1.xlarge x 2 processes
unoptimizedv hand·tuned (c1.xlarge x 4 processes -- . -
unoplimizedv hand·tuned (c1.xlarge x 8 processesl

Optimization break-even: Unoptimized =Hand-tuned (theoretical --

..
i '.

.';

....
•

215 220

Working Set [8]

Fig. 7. CacheBench Wr hand-tuned benchmark results on the c1 . xl arge instance type
with 1- 8 processes per instance

better than the performance of the HPC clusters. We attribute this mixed be
havior to the network characterist ics: the EC2 platform has much higher latency,
which has an important negat ive impact on the performance of the HPL bench
mark. In part icular, this relatively low network performance means that the
ratio between the theoretical peak performance and achieved HPL performance
increases with the number of instances, making the virtual EC2 cluste rs poorly
scalable. Thu s, for scientific computing applicat ions similar to HPL the virtual
EC2 clusters can lead to an order of magnitude lower performance for large sys
tem sizes (1024 cores and higher), while for other types of scientific comput ing
the virtual EC2 clusters are already suitable execut ion environments.

Reliability. We have encounte red several reliability problems durin g these ex
periments ; the two most important were related to HPL and are reproducible.
First , the ml .large instances hang for an HPL problem size of 27,776 (one pro
cess blocks). Second, on the cl.medium instance HPL cannot complete problem
sizes above 12,288 even if these should st ill fit in the available memory; as a
result , the achieved performance on cl.medium was much lower than expected.

4 How to Improve Clouds for Scientific Computing?

Tuning applications for virtualized resources: We have shown through
out Section 3.3 that there is no "best"-performing instance type in clouds-each

128 S. Ostermannet aI.

instance type has preferred instruction mixes and types of applications for which
it behaves better than the others. Moreover, a real scientific application may ex
hibit unstable behavior when run on virtualized resources. Thus, the user is
faced with the complex task of choosing a virtualized infrastructure and then
tuning the application for it. But is it worth tuning an application for a cloud?
To answer this question , we use from CacheBench the hand-tuned benchmarks
to test the effect of simple, portable code optimizations such as loop unrolling
etc. We use the experimental setup described in Section 3.2. Figure 7 depicts
the performance of the memory hierarchy when performing the Wr hand-tuned
then compiler-optimized benchmark of CacheBench on the c i .xlarge instance
types, with 1 up to 8 benchmark processes per instance . Up to the L1 cache size,
the compiler optimizations to the unoptimized CacheBench benchmarks leads
to less than 60% of the peak performance achieved when the compiler optimizes
the hand-tuned benchmarks. This indicates a big performance loss when run
ning applications on EC2, unless time is spent to optimize the applications (high
roll-in costs) . When the working set of the application falls between the L1 and
L2 cache sizes, the performance of the hand-tuned benchmarks is still better,
but with a lower margin. Finally, when the working set of the application is
bigger than the L2 cache size, the performance of the hand-tuned benchmarks
is lower than that of the unoptimized applications. Given the performance dif
ference between unoptimized and hand tuned versions of the same applications,
and that tuning for a virtual environment holds promise for stable performance
across many physical systems, we raise as a future research problem the tuning
of applications for cloud platforms.

Newproviders seem to address most of the bottlenecks weidentified in this work
by providing cloud instances with high speed interconnections like penguin com
puting [24] with their Penguin on Demand™(PODTM) and HPC as a Service"
offers. HPC as a Service extends the cloud model by making concentrated, non
virtualized high-performance computing resources available in the cloud.

5 Related Work

There has been a spur of research activity in assessing the performance of virtu
alized resources, in cloud computing environments and in general [33,10,23,29,
21,19,32,26,27]. In contrast to these studies, ours targets computational cloud
resources for scientific computing, and is much broader in size and scope: it per
forms much more in-depth measurements, compares clouds with other off the
shelf clusters.

Close to our work is the study of performance and cost of executing the
Montage workflow on clouds [10]. The applications used in our study are closer
to the mainstream HPC scientific community. Also close to our work is the
seminal study of Amazon S3 [23], which also includes an evaluation of file
transfer between Amazon EC2 and S3. Our work complements this study by
analyzing the performance of Amazon EC2, the other major Amazon cloud ser
vice. Several small-scale performance studies of Amazon EC2 have been recently

A Performance Analysis of EC2 Cloud ComputingServices 129

conducted: the study of Amazon EC2 performance using the NPB benchmark
suite [29], the early comparative study of Eucalyptus and EC2 performance [21],
etc . Our performance evaluation results extend and complement these previous
findings, and give more insights into the loss of performance exhibited by EC2
resources.

On the other hand scientists begin to adapt the cloud infrastructure for their
scientific computing. They run their calculations in the cloud [16], extend clusters
on demand with IaaS resources [10] and execute big workflows on a resource mix
from traditional grids and clouds [22]. This shows the growing importance of
IaaS cloud providers for scientific computing and the need to have performance
estimates for the different offered types beyond the marketing information offered
by the providers.

6 Conclusions and Future Work

With the emergence of cloud computing as the paradigm in which scientific
computing is done exclusively on resources leased only when needed from big
data centers , e-scientists are faced with a new platform option . However, the
initial target of the cloud computing paradigm does not match the characteristics
of the scientific computing workloads. Thus, in this paper we seek to answer an
important research question: Is the performance of clouds sufficient for scientific
computing'? To this end, we perform a comprehensive performance evaluation
of a large computing cloud that is already in production. Our main finding is
that the performance and the reliability of the tested cloud are low. Thus , this
cloud is insufficient for scientific computing at large, though it still appeals to
the scientists that need resources immediately and temporarily. Motivated by
this finding, we have analyzed how to improve the current clouds for scientific
computing, and identified two research directions which hold each good potential
for improving the performance of today's clouds to the level required by scientific
computing. New provider [24] seem to address this directions and we plan to test
their services to see if they can hold their claims.

We will extend this work with additional analysis of the other services offered
by Amazon: Storage (S3), database (SimpleDB), queue service (SQS), Private
Cloud, and their inter-connection. We will also extend the performance evalu
ation results by running similar experiments on other IaaS providers [25] and
clouds also on other real large-scale platforms, such as grids and commodity
clusters . In the long term, we intend to explore the two new research topics that
we have raised in our assessment of needed cloud improvements.

Acknowledgment

This work is partially funded by the European Union through the IST-034601
edutain@grid project and the Austrian Federal Ministry for Education, Sci
ence and Culture through the GZ BMWF-1O.220/0002-II/1O/2007 Austrian Grid
project.

130 S. Ostermann et al.

References

1. The Cloud Statu s Team. JSON report crawl (January 2009),
http://vvv.cloudstatus .com/

2. The HPCC Team. HPCC hallenge results (Sept. 2009),
http://icl .cs .utk.edu/hpcc/hpcc_results .cgi

3. Advanced Clustering Tech. Linpack prob lem size ana lyzer (December 2008),
http ://vvv .advancedclustering .com/

4. Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2) (September 2009),
http ://aws .amazon.com/ec2/

5. Arpaci-Dusseau, R.H., Arpaci-Dusseau, A.C., Vahdat, A., Liu, L.T., Anderson,
T.E ., Pat terson, D.A.: The interaction of parallel and sequent ial workloads on a
network of workstat ions. In: SIGMETRICS, pp . 267-278 (1995)

6. Babcock, M.: XEN benchmarks. Tech. Rep. (August 2007),
http://mikebabcock .ca/linux/xen/

7. Barham, P., Dragovic, B., Fraser, K ., Hand , S., Harris, T .L., Ho, A., Pratt , 1.,
Warfield, A.: Xen and the art of virt ualizat ion. In: SOSP. ACM, New York (2003)

8. Bradshaw, R., Desai, N., Freeman , T., Keahey, K .: A scalable approach to deploying
and managi ng appliances. In : TeraGrid Conference 2007 (Ju ne 2007)

9. Bray, T .: Bonnie, 1996 (December 2008), http ://vvv .textuality .com/bonnie/
10. Deelman , E., Singh, G., Livny, M., Berriman, J .B., Good, J .: The cost of doing

science on the cloud: the Montage example. In: SC, p. 50. IEEE/ ACM (2008)
11. Dongarra, J ., et al.: Basic linear algebra subprograms technical forum standard.

Int '1. J . of High Perf. App, and Supercomput ing 16(1), 1- 111 (2002)
12. Foster, LT., Freeman , T. , Keahey, K ., Scheftner, D., Sotomayor, B., Zhang , X.: Vir

tual clusters for grid communities . In: CCGrid, pp . 513-520. IEEE, Los Alamitos
(2006)

13. GoGrid. GoGrid cloud-server hosting (September 2009), http : //vvv .gogrid. com
14. Kowalski, A.: Bonnie - file system benchmarks. Tech. Rep., Jefferson Lab (October

2002), http ://cc .jlab.org/docs/scicomp/benchmark/bonnie.html
15. Luszczek, P., Bailey, D.H., Dongarra, J ., Kepner, J ., Lucas, R.F ., Rab enseifner,

R., Takahashi, D.: S12 - The HPC Challenge (HPCC) benchmark suite . In: SC, p.
213. ACM, New York (2006)

16. Assuncao, A.C.M., Buyya , R.: Evaluating the cost-benefit of using cloud comput ing
to exte nd the capacity of cluste rs. In: Kranzlmiiller, D., Bode, A., Hegering, H.-G.,
Casanova, H., Gerndt , M. (eds.) 11th IEEE International Conference on High Per
formance Computi ng and Communications, HPCC 2009. ACM, New York (2009)

17. McVoy, L., Staelin, C.: LMbench - tools for performance ana lysis (December 2008),
http://vvv .bitmover.com/lmbench/

18. Mucci, P.J. , London, K.S.: Low level architectural characterizat ion benchmarks for
parallel computers. Technical Report UT-CS-98-394, U. Tennessee (1998)

19. Nagara jan, A.B., Mueller, F., Engelmann, C., Scott, S.L.: Proactive fault tolerance
for HPC with Xen virt ualization. In: ICS, pp . 23-32. ACM, New York (2007)

20. Nishimura , H., Maruyama, N., Matsuoka, S.: Virt ual cluste rs on the fly - fast ,
scalable, and flexible inst allation. In: CCGrid , pp. 549-556 . IEEE, Los Alamitos
(2007)

21. Nurmi , D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, 1.,
Zagorodnov, D.: The Eucalyptus open-source cloud-computing system. UCSD
Tech. Rep . 2008-10 (2008), http://eucalyptus.cs .ucsb.edu/

A Performance Analysis of EC2 Cloud Computing Services 131

22. Ostermann, S., Prodan, R. , Fahringer , T .: Extended grids with cloud resource
management for scientific computing. In: Grid 2009: IEEE / ACM International
Conference on Grid Computing (October 2009)

23. Palankar, M.R., Iamnitchi , A., Ripeanu, M., Garfinkel, S.: Amazon S3 for science
grids: a viable solution? In: DADC 2008: Proceedings of the 2008 international
workshop on Data-aware distributed computing, pp . 55-64. ACM, New York (2008)

24. Penguin Computing. Reliable hpc linux systems (September 2009),
http ://www.penguincomputing .com/

25. Prodan, R., Ostermann, S.: A survey and taxonomy of infrastructure as a ser
vice and web hosting cloud providers. In: Grid 2009: IEEE/ACM International
Conference on Grid Computing (October 2009)

26. Quetier, B., Neri, V., Cappello, F.: Scalability comparison of four host virtualiza
tion tools. J . Grid Comput. 5(1),83-98 (2007)

27. Sotomayor, N., Keahey, K., Foster , 1.: Overhead matters: A model for virtual re
source management. In: VTDC, pp. 4-11. IEEE , Los Alamitos (2006)

28. Thain, D., Tannenbaum, T ., Livny, M.: Distributed computing in practice: the
Condor experience . Cone. & Comp.: Pract. & Exp. 17(2-4), 323-356 (2005)

29. Walker, E.: Benchmarking Amazon EC2 for HP Scientific Computing. Login 33(5),
18-23 (2008)

30. Wang, P., Thrner, G.W., Lauer, D.A., Allen, M., Simms, S., Hart, D., Papakhian,
M., Stewart, C.A.: Linpack performance on a geographically distributed linux clus
ter. In: IPDPS. IEEE , Los Alamitos (2004)

31. Worringen , J ., Scholtyssik, K.: MP-MPICH: User documentation & technical notes
(June 2002)

32. Youseff, L., Seymour, K., You, H., Dongarra, J ., Wolski, R.: The impact of paravir
tualized memory hierarchy on linear algebra computational kernels and software.
In: HPDC , pp . 141-152. ACM, New York (2008)

33. Youseff, L., Wolski, R., Gorda, B.C., Krintz , C.: Paravirtualization for HPC sys
tems . In: Min, G., Di Martino , B., Yang, L.T. , Guo, M., Riinger, G. (eds.) ISPA
Workshops 2006. LNCS, vol. 4331, pp. 474-486. Springer, Heidelberg (2006)

Cyberaide Virtual Applicance: On-Demand
Deploying Middleware for Cyberinfrastructure

Tobias Kurze", Lizhe Wang" , Gregor von Laszewski", Jie Tao1, Marcel Kunze",
Fugang Wang3 , David Kramer" , Wolfgang Karl", and Jaliya Ekanayake/

1 Steinbuch Center for Computing, Karlsruhe Institute of Technology,
Karlsruhe 76344, Germany

2 Pervasive Technology Institute, Indiana University at Bloomington,
Bloomington, IN 47408

3 Service Oriented Cyberinfrastructure Laboratory,
Rochester Institute of Technology, Rochester, NY 14623

4 Department of Computer Science,
Karlsruhe Institute of Technology, Karlsruhe 76131, Germany

Abstract. Cyberinfrastructure offers a vision of advanced knowledge
infrastructure for research and education. It integrates diverse resources
across geographically distributed resources and human communities. Cy
beraide is a service oriented architecture and abstraction framework that
integrates a large number of available commodity libraries and allows
users to access cyberinfrast ructure through Web 2.0 technologies. This
paper describes the Cyberaide virtual appliance, a solution of on-demand
deployment of cyberinfrastructure middleware, i.e. Cyberaide. The pro
posed solution is based on an open and free technology and software
- Cyberaide JavaScript, a service oriented architecture (SOA) and grid
abstraction framework th at allows users to access the grid infrastruc
tures through JavaScript . The Cyberaide virtual appliance is built by
installing and configuring Cyberaide JavaScript in a virtual machine.
Established Cyberaide virtual appliances can then be used via a Web
browser , allowing users to create, distribute and maintain cyberinfras
tructure related software more easily even without the need to do the
"tri cky" installation process on their own. We argue that our solution
of providing Cyberaide virtual appliance can make users easy to access
cyberinfrastructure, manage their work and build user organizations.

Keywords: JavaScript , Cyberinfrastructure, Virtual Appliance .

1 Introduction

Research topics of modern cyberinfrastructure cover the development of a wide
range of computing and information processing infrastructures and services, for
example, advanced data acquisition/storage/processing/visualization, high per
formance computing environments for advanced scientic & engineering appli
cations, and other networked services. There are a lot of scenarios where an
advanced cyberinfrastructure is needed. Especially in the scientific domain such

D.R. Avresky et a l. (Eds .): Cloudcomp 2009 , LNI CST 34, pp . 132-144 ,2010.
© Institute for Computer Sciences , Social-Informatics a nd Telecommunications Engineering 2010

Cyberaide Virtual Appliance 133

infrastructures are of great use. Nevertheless, users who wants to use an ad
vanced cyberinfrastructure may find it hard to use or are just unable to use it
due to the complexity involved. This is where the Cyberaide toolkit becomes
handy. Cyberaide is a lightweight middleware for users to access advanced mod
ern cyberinfrastruc ture. It provides various user interfaces and toolkits for users
to access resources, submit jobs and manage user organizations. However it takes
some time and effort to set it up. For users of Cyberaide it would be much easier
and more convenient to have a tool that installs and deploys Cyberaide auto
matically. As the services provided by Cyberaide can be accessed through a web
interface it is an obvious choice to deploy Cyberaide as a virtual appliance .

A virtual appliance provides a lot of benefits compared to "tradit ional soft
ware" : simple installation and setup ; very easy deployment process; helping aug
ment the efficient utilization of underlying hardware [1] . The appliance can be
tested to ensure that all the software is working correctly on the hardware de
scribed by the virtual appliance itself. Additionally a virtual appliance is main
tained by the creators of the appliance and not by the users, allowing to create
correct updates with higher confidence [2].

We propose to use virtu al appliances to simplify users' work in accessing
cyberinfrast ructures. The solution is to create a Cyberaide Virtual Appliance
on the fly, then to deploy and configure it , and finally to expose its services
to the users. With the cyberaide virtual appliance, users can on-demand build
middleware to access production cyberinfrastructure, likeTeraGrid, and organize
their work on the cyberinfrastructure .

The rest of the paper is organized as follows. Section 2 introduces related
work and provides background information . This is followed by an overview of
the Cyberaide Toolkit in Section 3. Section 4 illuminates the proposed Cyberaide
Virtual Appliance solution, follwed by some test results in Section 5. Section 6
concludes with a short summary and an outlook about future work.

2 Background and Related Work

Advanced cyberinfrast ructure facilitates the development of new applications ,
allows application s to interoperate across institutions and disciplines, insures
that data and software acquired at great expense are preserved and easily avail
able and empowers enhanced collaboration over distance, time and disciplines.
Cyberaide is a service oriented architecture that enables users to access and ma
nipulat e cyberinfrastructure resources. The Cyberaide toolkit originate from grid
portal framework and Globus Toolkit project. The development of grid portals
has started some time ago and one of the first usable libraries supporting grid
portal development was the Java CoG Kit [3]. Another important resource is the
TeraGrid portal [4] that is used to obtain access to grid resources. TeraGrid it
self uses the Globus Toolkit [5] to manage resources. Unfortunately this solution
doesn't integrate JavaScript. To tackle this issue Cyberaide Javascript [6] has
been developed. It is a grid abstract ion framework that enables the easy access
to grids through JavaScript .

134 T. Kurze et al.

Another important technology base for building the Cyberaide Virt ual Ap
pliance is virt ualization. One of the earliest VM solutions has been provided by
IB:\1 in 1972 [7]. Nowadays different solutions are available that can be classi
fied into several categories according to the virt ualization technique used. One
solution is XEN [8], which uses the parav irtualizat ion [9] technique. Another
virtualization technique is Full Virt ualisat ion. VMware Server [10], KVM [11]
and Microsoft Virtual PC [12] are representatives of this category.

To reduce the complexity of software development a relatively new approach
is to use Virt ual Appliances. Some software systems are difficult to compile,
to link, and to install and have been well tested just on a specific version of
tools and platforms. A software publisher can bundle the necessary tools in an
appliance and distribute it to users [13].

The Grid Appliance is an example of a Virtual Appliance. It is a virtual
machine based syst em which enables an execution environment in which users
are given the opportunity to voluntarily share resources and run unmodified
x86/Linux applications [14]. Another interesting appliance is Cern VM [15]which
is built using rBuilder [16] and provides a minmal Linux base to run LCG (LHC
Computing Grid [17]) applicat ions. CernVM is available as a raw system image
file or as a VMware image.

Some relat ed work on cloud computing [18,19] uses virt ual machine and vir
tual appliance as basic building blocks. Eucalyptus [20] is a cloud comput ing
system that implements what is commonly referred to as Infrastructure as a
Service (IaaS) [21]. It provides the possibility to run and control virt ual ma
chine instances which are deployed across a variety of physical resources and
offers an entry-point into a cloud for users and administ rators . A computing
cloud is a pool of network enabled virtualized resources and services that can be
dynamically reconfigured to adjust to a variable load, providing scalable, QoS
guaranteed computing plat forms on demand. There are multiple definitions for
the term 'cloud computing ', please refer to [18, 19] for more details. OpenNEb
ula [22] decouples a server not only from the physical infrastructure but also from
the physical locat ion by enabling the dynamic deployment and re-placement of
virtualized serviceswithin and across sites. It 's a tool that can be used to manage
clouds, even public clouds when combined with a cloud interface. The Xen Grid
Engine [23, 24] is an extension of the Sun Grid Engine cluster management sys
tem based on the Xen Hypervisor. It supports for virtu al machine management
and offers increased usability and security features for cluster environments.

3 Cyberaide: A Light Weight Middleware for Production
Grid

As introduced in the frist section, there are a lot of scenar ios where an ad
vanced cyberinfrast ruct ure is needed, but it might be difficult to use one. A
possible solut ion to this dilemma is provided by Cyberaide. Several tools have
been developed under the Cyberaide logo; well-known examples are Cyberaide
toolkit and Cyberaide Shell. Consecut ively Cyberaide too lkit 's architecture will
be short ly introduced and explained.

Cyberaide Virtual Appliance 135

Cyberaide enjoys the following essential features:

- Ease of use: make the JavaScript based API and interfaces useful for Grid
and Web developers.

- Low installation footprint: support fast downloads as well as an easy main
tenance through a small manageable code base.
Security: gain access to Grid resources in order to avoid compromising the
system. This is especially important due to known limitations of JavaScript.
Basic Grid functionality: is provided for developers to create Grid-based
client applications.

- Advanced functionality: is offered as many developers do not want to repli
cate functionality provided by other Grid middleware and upperware.

The framework is designed in layers and comprised of different components.
(see also Fig. 1). A web client that provides access to Grid functionality and
components that can be deployed in a web server are provided. A service called
"mediator service" mediates tasks to the Grid and basically is a secure server
that provides most of the functionalities in regard to the Grid .

SSH I GlobusToolk it I Java CoG Kit API I KaraJan

Fig. 1. System Architecture

- Web client: provides elementary functionality to access the Grid through a
portal user interface.
Server: contains two logical parts:

- Agent service: is the intermediate service between Web client and me
diator service; works as proxy for users to interact with the mediator
service.

136 T . Kurze et al.

- Mediator Service: is the bridge between the Grid and the client library.
The mediator service offers different functionalities and conta ins the ap
plicat ion logic.

Because of the separation between the service and the client the development
of Cybera ide shell was possible. th is is a system shell that facilitates the use of
cyberinfrastructures. It contains four high level design components : object man
agement , cyberinfrastruct ure backends, command line interpreters, and services
(see Fig. 2).

ObtKt M, napment Cotrvn,nd 1In~ Int~rfa<e

• Utrr " ~ • kJ1pn

. Job. ,.... o..t"'~, . 1I'It.,~

s~~. ' MMl~....._...........,..:~

CyberinfmlnJeture
8o,lench
'~CorIdar. SSH, oI..oN.Iot\

GaG..

Fig. 2. High level design of Cyberaide Shell

4 Cyberaide Virtual Appliance: On Demand Accessing
Production Grids

To help users focus on the ir work and to also enable unexperienced users to
work with Cyberaide, a virt ual appliance for Cyberaide that configures itself for
the most part might be a good solut ion. There are several tools available that
facilitate the creat ion of a virt ual appliance. Below, some information about two
different tools usually used to create the Cyberaide virt ual appliance is listed.

- VMware Studio [25] is a tool provided by VMware and is an appliance itself.
It provides a Web Interface through which an appliance can be configured
easily with the following steps:

- Configure a "virtual hardware" , for example, memory, hard disk, net
work.

- Choose an operating system (an ISO image has to be provided for the
selected as, by default only a few operat ing systems are supported)

- Configure the software that should be installed on the virt ual machine.
Packages that are available on the installation medium (.iso) can be
selected and will be installed automat ically.

- Set a ta rget machine and directory. The appliance will then be copied to
the specified location. VMware Studio is also able to automatically sta rt
the created appliance on a specified and correctly configured V:Ylware

Cyberaide Virtual Appliance 137

Server [10]. The created virtual machine consists of a vmx and a vmdk file
th at can be used with any hypervisor solution support ing these formats .
(ESX, VMware Workstation, etc.)

- The second commonly used tool is VMBuilder [26]. VMbuilder basically is
just a script that automates the process of creating a ready to use VM based
on Ubuntu [27]. VMbuilder is part of JeOS 8.10 (Ubuntu: Int repid Ibex). It
offers the same abilities as VMware Studio does, except for the web interface
used to configure the appliance. Nevertheless the configuration is still quite
easy and done via some configuration files . In addit ion to that , there is no
need for an ISO image on the local machine; VMbuilder automatically down
loads all necessary files from the Internet. The operating system that will
be installed (by default) is JeOS [28], a very efficient variant of the Ubuntu
Server operating system, configured specifically for virtual appliances.

Since both tools show their own features, it is not easy to decide on one for
building our Cyberaide virtual appliance. In order to make a decent choice we
have evaluated and tested both tools. The following subsection outlines th is
evaluat ion process.

4.1 Evaluation of Tools

The two possible solutions to create the Virtual Appliance as presented above
are free and offer all needed functionality. To finally make up a decision the pros
and cons of each tool have been evaluated. A listing of some evaluation criteria
and the corresponding results are given in Table 1.

Table 1. Evaluation of virtual appliance creat ion tools

Crit eria V Mwa reStudio J eOSVMB uilder
ease of use very good, web-based interface less comfortable, only eLI
supported ass Ubuntu: SUSE, RedHat , CentOS Ubunt u JeOS"only
supported hypervisors VMware only KVM, Xen and VMware
auto-start on hypervisor supported not supported
encountered problems a 10tV no serious problems

1 different distributions available.
2 efficient variant of the Ubuntu Server operating system .
3 see succeeding description.

Even though VMware Studio has some features ahead of JeOSVMBuilder
there occured a lot of problems while using it . For example: In theory an au
tomated transfer of the created appliance to a target host , which is running
VMware Server, is supported, but didn 't work properly. Another drawback of
VMware's solution is the package management. To directly install a certain pack
age into the appliance it 's necessary to also add in all dependencies of this pack
age . This results in a tricky and less comforta ble configuration.

138 T. Kurze et a1.

Despite JeOSVMBuilder only support ing Ubuntu as operating system, its
support for a large range of hypervisors is much more important. In addition,
the applied operating system (Ubuntu JeOS [28]) is light and allows a very small
virtual image file size and a good performance of the virtual machine.

On the other hand, JeOSVMBuilder doesn't provide functions to copy the
created image on a target machine nor does it allowto start the created appliance
on a hypervisor. However, this missing function ality can be added easily with a
small script.

Overall, JeOSVMBuilder is better for our use case. The details about how
adaptable this tool is can be seen in the following subsection.

4.2 Solution Description

After having evaluat ed the different possibilities we selected JeOSVMBuilder to
create the Cyberaide virtual appliance. This command line tool requires just two
basic param eters! to create a trivi al virtual appliance. In the presented solution
VMware is used as hypervisor and Ubuntu JeOS as operating system. All avail
able parameter s may either be passed to JeOSVMBuilder on the command line
directly or by using some configurat ion files. The proposed solut ion uses four
configuration files that cont rol and set up the building process of the virtual
appliance:

- A basic configurat ion file that allowsto define some basic parameters such as:
platform type (i386), amount of memory of the virt ual appliance, packages
that should be directly installed, etc .

- A hard-disk configuration file that defines the size of each available (virt ual)
hard-disk and the number and size of all the parti tions that will be created
on these hard-disks.

- Boot.sh: Shell script that will be executed dur ing the first boot of the new
appliance.

- Login.sh: Shell script that will be executed after the first logon in the new
appliance.

The essential par t of the build process of the Cyberaid e appliance is located in the
two shell scripts . The boot .sh script sets some system environment parameters
and installs and downloads required software. As some of the packages require
user input (for example: user has to accept license of Sun's JDK) a completely
unattended installation is not possible, hence those installations that require
user input or rely on packages th at need user input are started using the login.sh
script.

Fig. 3 depicts the complete installation process:

- The user starts a script and passes some parameters such as proxy-host and
proxy-port to it. This adapts the VMbuilder configuration files and starts
the VMbuilderscript .

1 l.)target as (always Ubunt u) and 2.)target hypervisor.

Cyberaide Virtual Appliance 139

Runsvrnbulkjec 'NIthpararre:ers
PfOxyHrvet. proxypcw"..

,
I

I
I,

I,,
: I

'''''transferl bI

0 : Cybe

---~'---- ~
transfer appl&ance 0

tovmserver andstart I: ~

\----nI
I
I
I
I
I

Uset has :0 Iogn
to accept lanse

~
\
\
\
\
\

Fig. 3. Cyberaide Virtual Appliance: Build Process

VMbuilder then creates a virt ual machine and installs some basic packages
in it .

- The virtual machine files are moved to the VMserver and the appliance is
started for the first time.
Boot and Login scripts are executed. Because of some licensing issues the
user has to login into the new appliance and accept the Sun license. Then the
rest of the inst allation is completed and the appliance is completely created.

- The appliance is runn ing and the services are ready to be used.

Besides the Boot and Login scripts, another two scripts were written, one for
adapting the VMbuilder configuration files and the other for transferring the
appliance to the target host and sta rt ing it on the specified hypervisor. To ensure
a secure communicat ion between the host running V1.1builder and the target host
(and the hypervisor (host] (if different)) ssh is used. As the connect ions between
the hosts mentioned above have to be established in an automated manner it 's
preferable to use certificates instead of passwords for ssh.

4.3 Scenario

A possible scenario where an advanced cyberinfrast ruct ure may be of use is a grid
and additional tools simplifying the use of it. To set up and to configure a grid
middleware is not an easy task, so additional tools that provide an abst ract ion
layer may be introduced to make it possible to use the grid services through a web
interface, for example. One tool that provides such functionality is Cyberaide.

140 T. Kurze et al.

As Cyberaide itself relies on some other tools its configuration is not an easy
task either . A (scientific-)user may find it too complicated or may just not be
able to install all necessary tools. This is where the auto-install and deployment
process of Cyberaide, exactly what we do, comes into play.

This scenario assumes the existence of a grid (e.g. TeraGrid) and a user that
wants to run some jobs on this grid. The user may be a physicist and not familiar
with all details of the grid and how to configure his tools to use the grid. Because
he prefers to focus on his work and not to loose a lot of time setting up his tools
nor tinkering around with the grid, he decides to leave this time consuming step
to someone else. The IT department informs him, that there is a toolkit available
named Cyberaide and that it can be installed by just running a deployment and
installation script available on a machine running in the computing center. The
user, keen to try this tool (and leaving the work to it) starts the script from
his local machine and continues working. In the meantime a virtual appliance
is created and set up. After the process has been finished the user receives a
message that contains a description how to use the Cyberaide appliance and
how to configure it. This last configuration step is quite easy and should not
take a lot of time. As illustrated in this scenario the use of Cyberaide toolkit
and the automated installation and deployment process saves a lot of time and
helps users focus on their actual work.

5 Performance Evaluation and Discussion

5.1 Test of Cyberaide Virtual Appliance

The motivation was to provide a solution that facilitates the creation and the
deployment of the Cyberaide toolkit . The proposed solution provides a very
simple interface (see Fig. 4) that allows the creation of the appliance in an easy
way. It also includes an efficient way to transfer the appliance to a target system
from where it can automatically be started on a hypervisor.

There still are some inconveniences such as the need to log in during the
installation phase to accept the license or the small effort it takes to set up
the secured communications between the hosts. But finally the installation and
deployment of Cyberaide is really easy and comfortable for an user. Some facts
about the creation process are given in table 2.

The time to generate the appliance as well as the time needed to transfer it
to the computer where the hypervisor is running strongly depends the network
(and/or Internet) speed of the concerned systems . The numbers related to the
building time (as given in table 2) have been measured by using a system which
has a very fast internet connection . They may be extremely different on other
systems or in another network environment.

Once the basic appliance (aS & basic packages only) is generated and trans
fered to a hypervisor, the second part of the installation is performed by the
appliance itself. It downloads and installs all necesarry packages which takes
more time than the first part of the installation does.

Cyberaide Virtual Appliance 141

• l""l _ ..__1,... _

- _.... __..- -- --- ~ .. _- .

- .. - - ~~~::~::: -

~-=- :t:=~
==-::::=-- - ---:---==:.5.=

-_... --_....-_"-- - -- -~- • . -u-_... -__-
---"--'-._- --- --- ----- :.:.~:=:;.:.'::.=::===--- -_._---_ ..• • • ' . _ "" 1..._.__._- --_.- .._-....----_._...-- .._...---._----- ---....-._ _-- ---....._ _-- --.- -... .._ --- -- --

- - - -....- - --_.__._------- ..-____ '1_0 .
_ .. __.... _. '_ 0 0

~ - .- - ,. -- ..
~ :~~~1~~ n

F ig. 4 . Cyberaide Web Interface

The last installat ion steps are performed after the first login and basically
install Cyberaide and all related components .

Finally the user has just to set up his cert ificates and keyfiles. The complete
procedure takes in tota l about one hour (depending on the hardware) and needs
just 2 user interact ions (first login: accept license and set up cert ificates user login).

5.2 Test of Cyberaide Virtual Appliance on TeraGrid

To demonstrate that the appliance works, the LINPACK 1000x1000
benchmark program in single precision (1000s) and in double precision (1000d)
have been tested on one node on TeraGrid. The benchmark is available at
http ://www.netlib.org/benchmark/.

Please note th at this is just an exemplary program and the purpose of th is
test is not to measure the performance of the grid or any part of it .

The test has been performed using Cybershell which is included in the appli
ance. First step is to ret rieve credent ials. Th is can be done in Cybershell with
the myproxylogon command: security myproxylogon -u USERNAME. Cybershell
also provides an easy way to list available nodes (execution listnodes)and run
ning jobs (execution listjo bs). To finally submit a job the following command
can be used: execution s -id 12 -cmd myscript.s h.

142 T. Kurze et al.

Table 2. Some key numbers of the creation process

building time (OS & basic packages only) ca. 10 minutes
building time (until first login) ca. 20 minutes"
installation & deployment time after first login ca. 15 minutes"
total time ca. 45 minutes to one hour
virtual image file size (OS & basic packages only) ca. 400 MByte"
virtual image file size (total) ca. 2,8 GByte

1 includes download time of OS & packages (without local repository).
2 installation continues after login for license reasons.
3 remaining packages will be downloaded and deployed after login.
4 less than 200 MByte (ca. 190 MByte) zipped size.

Technical Info:
Host machine: Core i7 3,2 GHz, 6 GByte DDR3, fast Internet (2MB/s)
VMbuilder: Ubuntu 8.10 on VMware Server 2 (1 Core, 384MB assigned)

The submitted job is then scheduled and run on one (or more) of the execution
nodes for example the node tg-c254. On this particular node the unoptimized
lOOOd benchmark reported about 66 MFlops. A more optimized version (-02)
reports 133 MFlops. As mentioned above this should not be considered as a real
performan ce measureme nt of the grid , but only demonstrates th at principally
Cyberaide Virtual Appliance works.

6 Conclusion and Future Work

The Cyberaide Virtual Appliance provides a lot of functionality and in the same
time is quite easy to use even for inexperienced users. The web interface as well
as the secure shell (ssh) access to th e Virtual Appliance provide a comfortable
way to interact with it .

Cyberaide Virtual Appliance improves the Cyberaide Toolkit with a simple
user interface and is a step forward that provides a faster , more reliable and
easier installation , setup and configuration phase which finally results in a more
productive working environment .

However, there are still some problems with the prototypical implementation:

- Large amount of data has to be downloaded during the install ation . Th is
may cause high cost in data transfer and long creation time depending on
the Internet access speed.

- Uncomfort able start of building process.
- DHCP server has to be available and leasing addresses to Virtual Appliances.

Future work on Cyberaide Virtual Appliance may attack th ese problems . Possi
ble solutions might be:

- To reduce the amount of data that has to be downloaded a local repository
for software packages and the JeOS image could be creat ed. This will accel
erate the creation process of the Virtual Appliance as well as reduce costs

Cyberaide Virtual Applian ce 143

by avoiding t ransfers from the Internet . Another point may be that in the
future some of the necessary packages are no longer available in the Internet
repositories due to updates, etc ... A local repository guarant ees the presence
of all necessary packages and versions.

- At the moment the installation process is st arted via the console on a local
machine. It might be even more comfortable to have a web interface where a
user can request the Cyberaide Virtu al Appliance to be installed on a cert ain
machine and to be started on a specified hypervisor. Once the machine is up
and running all information the user may need to proceed (e.g. IP address
of Virtual Appliance) could be displayed directly in the browser.

- By default, the Virtual Appliances tries to use the bridged networking in
terface of the hypervisor it 's running on and expects to receive a DHCP
lease while bootin g. Hence a DHCP server and a virtual bridged network
ing adapter has to be provided. In a future version NAT support might be
included.

In summary, we use the virtual appliance approach to automate the process of
installing the middleware for accessing cyberinfrast ructures. The initial produ ct
is available for users. Problems mentioned above will be solved in the near future.

Acknowledgment

Work conducted by Gregor von Laszewski and Lizhe Wang is supported (in part)
by NSF CMMI 0540076 and NSF SDCI NMI 0721656.

References

1. Herrod , S.A.: Future of virtualization technology
2. Sapuntzakis, C.P., Lam, M.S.: Virtual appliances in th e collective: A road to hassle

free comput ing. In: Jones, M.B. (ed.) HotOS , pp . 55- 60. USENIX (2003)
3. von Laszewski, G., Foster, LT ., Gawor, J ., Lane, P.: A java commodity grid kit .

Concurrency and Computation: Pr actice and Experience 13(8-9) , 645-662 (2001)
4. Teragrid portal, http ://WWTiI . teragrid .org/userinfo/portal. php
5. Th e globus toolkit , http://WWTiI . globus . org
6. von Laszewski, G., Wang, F., Younge, A., He, X., Guo, Z., Pierce, M.: Cyberaide

javascript : A javascript commodity grid kit , pp . 1-10 (2008)
7. Vm history, http://www .vm.ibm .com/history/
8. Barh am, P., Dragovic, B., Fraser, K., Hand , S., Harris, T .L., Ho, A., Neugebauer ,

R. , Pratt , I., Warfield, A.: Xen and th e art of virtualizat ion. In : Scott , M.L., Pe
terson, L.1. (eds.) sasp, pp. 164-177. ACM, New York (2003)

9. Whitaker, A., Shaw, M., Gribble, S.D.: Denali: Lightweight virtual machines for
distributed and networked applications. In: Proceedings of the USENIX Annual
Technical Conference (2002)

10. Vmware server, http ://WWTiI .vmware.com/products/server/
11. Kvm - kernel based virtual machine, http ://WWTiI .linux-kvm. org/page/Main_Page
12. Microsoft virtual pc,

http ://WWTiI .microsoft.com/windows/virtual-pc/default .aspx

144 T . Kurze et al.

13. Sapuntzakis, C.P., Brumley, D., Chandra , R., Zeldovich, N., Chow, J ., Lam, M.S.,
Rosenblum , M.: Virtual appliances for deploying and maintaining software. In:
LISA, pp . 181-194. USENIX (2003)

14. Wolinsky, D.L, Figueiredo, R.J .: Simplifying resource sharing in volunt ary grid
computi ng with th e grid appliance. In: IPD PS, pp . 1-8. IEEE, Los Alamitos (2008)

15. Cernvm , http ://cernvm.cern .ch/cernvm/
16. rbuilder, http ://www.rpath .com/rbuilder/
17. Leg, http://lcg .web.cern .ch/LCG/
18. Wang, L., Tao, J ., Kunze, M., Castellanos, A.C., Kramer, D., Karl , W.: Scientific

cloud computing: Early definition and experience. In: HP CC, pp. 825-830. IEEE,
Los Alamit os (2008)

19. Vaquero, L.M., Rodero-Merino, L., Caceres, J ., Lindner, M.: A break in the clouds:
towards a cloud definition. SIGCOMM Comput . Commun. Rev. 39(1), 50-55
(2009)

20. Eucalyptus, http ://www.eucalyptus.com/
21. Nurmi, D., Wolski, R., Grzegorczyk, C., Obert elli, G., Soman, S., Youseff, L.,

Zagorodnov, D.: The eucalypt us open-source cloud-computing system. In : P ro
ceedings of Cloud Computi ng and Its Applications (October 2008)

22. Opennebula, http ://www.opennebula .org/doku .php?id=start
23. Xge - xen grid engine, http://mage.uni-marburg .de/trac/xge
24. Fallenbeck, N., Picht , H.J ., Smith , M., Freisleben, B.: Xen and the art of clus

ter scheduling. In: First International Workshop on Virtualizat ion Technology in
Distributed Computing, VTDC 2006, p. 4 (2006)

25. Vmware studio,
http ://www.vmware.com/support/developer/studio/index .html

26. Jeosvmbuilder, https :llhelp .ubuntu . comlcommuni tyI JeOSVMBuilder
27. Ubuntu, http ://www .ubuntu.com/
28. Jeos, http ://www.ubuntu.com/products/whatisubuntu/serveredit ionI j eos .
29. Kleinrock, L.: Ucla to be 1st stat ion in nationwide computer network (July 1969),

http ://www.lk .cs .ucla .edu/LK/Bib/REPORT/press .html
30. von Laszewski, G., Younge, A., He, X., Wang, F.: Cyberaide shell: Interactive

tas k management for grids and cyberinfrast ructure ,
http ://cyberaide .googlecode .com/svn/trunk/papers/OS-gridshelll
vonLaszewski-OS-gridshell.pdf,mailto:laszewski~gmail.com

31. Foster, I.: What is the grid? a three point checklist (J une 2002)
32. Oasis soa reference model,

http ://www.oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

Cloud Computing Platforms

Track Session 2

Service Supervision Patterns: Reusable
Adaption of Composite Services

Masahiro Tanaka", Toru Ishida 1,2 , Yohei Murakami 1, and Donghui Lin!

1 Language Grid Project ,
National Institute of Information and Communications Technology (NICT)

3-5 Hikaridai, Seika-cho, Kyoto, Japan
{mtnk,yohei,lindh}~nict.go .jp

2 Department of Social Informatics, Kyoto University
Yoshida-Honmachi , Sakyo-ku , Kyoto , 606-8501 , Japan

ishida~i.kyoto-u.ac.jp

Abstract. A composite Web service provided as a "cloud" service should
make its constituent Web services transparent to users. However, existing
frameworks for composite Web services cannot realize such transparency
because they lack capability of adapting changes of behaviors of con
stituents Web services and business rules of service providers . Service
Supervision, proposed in the previous work, allows us to flexibly adapt a
composite Web service by combining control execution functions which
control behavior of running instances ofcomposit e Web services. How
ever, much flexibility of the execution control functions sometimes makes
it difficult to design adaptation processes due to absence of accumulated
know-how such as guidelines. Moreover, it often costs a lot to port adap
tation processes to the model of composite Web service to be adapted.
To solve the problems , we first organized various adaptation processes
based on some previous works. Then we proposed Service Supervision
patterns, which consist of typical requirements for adaptation and WS
BPEL processes satisfying the requirements by using execution control
functions . The patterns are easy for designers of composite Web services
to understand and make it possible to reduce cost to port them to the
model of a composite service.

1 Introduction

In Cloud Computing, servers which provide Web services are transparent to
users and users do not need to care numbers or locations of the servers. As for a
composite Web service, which combines multiple Web services, the constituent
Web services of the composite Web service should also be transparent to users
when it is provided as a "cloud service" . However, it is often difficult to realize the
transparency because the constituent Web services can be provided by various
service providers and the behaviors of the services can unexpectedly change.
Therefore a composite Web service has to be capable of adapting to the changes.

For example , there are still many services deployed outside cloud and through
put of the services may decline in an environment where too many requests can

D.R. Avresky et al. (Eds .) : Cloudcomp 2009 , LNICST 34 , pp . 147-163, 2010 .
© Institute for Computer Scien ces , Social-Informatics and Telecommunications Engineering 2010

148 M. Tanakaet al.

be given during a certain period . In that case, a composite Web service which
combines such services needs to replace the constituent Web service with an al
ternative one in order to keep overall performance of the composite Web service.
Another example is changes of business rules of service providers. If a service
provider which provides one of the constituent Web services changes their busi
ness rules and becomes to require some preprocesses before execution of its
service, the business logic of the composite Web service must be changed.

However, WS-BPEL[I], a standard language for a composite Web service, is
not flexible enough to realize adaptation to frequent changes of the environment
or business rules. In the existing framework for WS-BPEL, a model of a compos
ite Web service (a definition of a WS-BPEL process) deployed on the execution
engine cannot be modified. Therefore we need to modify the model first and then
deploy it on the execution engine in order to adapt a composite Web service to
an environment or business rules. This has often prevented flexible and rapid
adaptation.

To make up the lack of flexibility, in [2], we proposed Service Supervision,
which changes the behavior of a composite Web service without modifying its
model using execution control functions such as step execution or changing an
execution point. By providing the execution control functions as Web services,
we make it possible to define a composite Web service which controls other
composite Web service for adaptation. One of the major advantages of Service
Supervision is reusability of the composite Web service which implements adap
tation. Moreover, the execution control functions realizes more flexible control
than that by some previous works on runtime adaptation([3,4,5,6]).

In the environment which frequently changes, however, we still have the fol
lowing problems even if we introduce Service Supervision .

- Difficulty in designing adaptation
Much flexibility of execution control functions sometimes makes it difficult
to design adaptation processes due to the absence of accumulated know-how
such as guidelines.

- Cost of updating model
When permanent demand of an adaptation becomes apparent , it is better to
update the model of the composite service. But it often costs a lot to port
an adaptation process using execution control functions to the model of the
composite Web service to be adapted.

Therefore we proposed Service Supervision Patterns, which guide designing
adaptation processes for composite Web services. Software patterns including de
sign patterns[7] have achieved a great success in design and analysis of software.
Also in the area of workflows, workflow patterns[8] have been widely accepted .

In this paper, weorganized various adaptations of composite Web services and
extracted typical execution controls as Service Supervision patterns. The Service
Supervision patterns consist of requirements for adaptation and WS-BPEL pro
cesses which implement the adaptation using execution control functions. There
fore it is easy for designers of composite Web services to reuse the patterns. The

Service Supervision Patterns: Reusable Adaption of Composite Services 149

patterns also show how to port the WS-BPEL processes for adaptation to the
model of Web service to be adapted.

The rest of this paper is organized as follows. In Section 2, first we describe
Service Supervision used to realize adaptation of a composite Web service and
explain the prototype we implemented. Next we organize typical adaptation
processes of composite Web services and show how to realize the adaptation
process using execution control functions in Section 3. Then we propose Service
Supervision patterns by extracting processes frequently appear in the previous
section. After introducing some related works in Section 5, we conclude this
paper in Section 6.

2 Service Supervision

In [2], the authors proposed Service Supervision, which changes the behavior of
a running instance of a composite Web service without changing the model of
the composite Web service. We show the overview of Service Supervision and
explain the prototype that we developed in this section.

Several researches have tried to change behaviors of a composite Web service
without modifying the model of a composite Web service. For example, Language
Grid [9] provides dynamic binding, which allows a user to specify endpoints (ad
dresses for accessing Web services) when invoking the composite Web service. In
this work, a composite Web service is designed based on only the interfaces of
the constituent Web services. A04BPEL[6] and Dynamo[5] allow a user to add
processes at certain points in a composite Web service based on the concept of
AOP (aspect-oriented programming). However, some functions for adaptation,
such as changing an execution point , cannot be achieved by adding a process by
AOP.

On the other hand, Service Supervision monitors and changes the state of
running instances and controls execution of the instances. This makes it possi
ble not only to add a process to an existing composite Web service, but also to
control execution state, including changing an execution point. Using Service Su
pervision , we can adapt a composite Web service to changes of the environment
and business rules without modifying the model and deploying it .

2.1 Execution Control Functions

We implemented execution control functions shown in Table 1 to realize Service
Supervision. The functions get/set the state of a running instance of composite
Web service or control execution of a composite Web service itself.

The functions are provided as Web services. Therefore we can define a com
posite Web service which controls the behavior of an instance of other composite
Web service by combining the execution control functions.

Although the execution control functions do not change the model of the
composite Web service, they realize various processes required for adaptation.

Take an example to clarify the necessity of the execution control functions.
In an environment where many Web services are published by various providers,

150 M. Tanaka et al.

Table 1. Execution control functions

API
step
suspend, resume

Effect
Execute the next activity in a compositeWeb service.
Suspend/Resume execution of a composite Web ser
vice.

getVariable, setVariable Get/Set variable defined in a composite Web service.
getState, setState Get/Set states of activities, such as ready, running,

finished and suspended.
setAddress

setEP
setBP

Set an endpoint address of an invocationin a compos
ite Web service.
Set the activities which is executed next.
Set a breakpoint at an activity in a composite Web
service and a callback Web service invoked when the
the execution stops at the breakpoint.

such as the Language Grid[9], a Web service can be shared by some composite
Web services in an unexpected way. For example, execution of the composite Web
service in Fig. l(a) may fail in such an environment. This composite Web service
translates a long document. It first splits the given document into sentences
(split) and then translates the sentences by the machine translation service
(translate) in the loop. Next , it merges the results of translation (merge) .

Assume that the provider of the machine translation service newly introduced
a limit on number of invocations of its service because too many requests were
given during a certain period. In such case, execution by a user may unexpect
edly cause a failure of exectuion by another user. Thus, when the number of
invocations approaches the limit, we need to switch the service to different one
by other provider . To implement this solution, we need to modify the document
translation service as shown in Fig. l(b). Before invoking the machine transla
tion service, the composite Web service invokes the external service to increment
the recorded number of invocations (count) .

However, the change of the model is not efficient when many service providers
are involved and policies of the service providers frequently change.

Our solution based on Service Supervision is to introduce a composite Web
service shown in the upper part of Fig. 2. This composite Web service counts

(a) Document translation service (b) Adaptation to limit of invocation

Fig. 1. Modification of a compositeWeb service for adaptation

Service Supervision Patterns: Reusable Adaption of Composite Services 151

the number of invocations of the machine t ranslat ion service and changes the
endpoint address to that of another machine t ranslation service when needed.

The composite Web service first sets a breakpoint (s et BP) before the invoca
tion of the machine translat ion service translate in the document t ranslation
service. It also sets invocation of count as the callback Web service for the break
point . When count is invoked, it increments the recorded number of invocation s
of the machine t ranslat ion service (i ncr ement) . If the number of invocations of
the machine translation service exceeds the limit , the endpoint address of the
machine t ranslat ion service is changed (s et Addr es s).

O+~-,
Execl/litJl/ :

control :
function .------.

•I
I

Invocationof ' Execution
cullbuck Web .--' control
-'en 'ice : function

Fig. 2. Composite Web service which controls oth er composite Web service

One of the major advantages of our solut ion is reusability of the composite
Web service for the adaptation. The composite service in the upper part of
Fig. 2 can be applied to various composite Web services in which the number of
invocat ion of a const ituent Web service is limited just by setting the breakpoint .

2.2 Prototype

We developed a proto type of Service Supervision by extending an existing WS
BPEL engine, ActiveBPEU as shown in Fig. 3.

The architecture consists of two parts: Composite Web service execut ion en
gine and interaction control engine. On the Composite Web service execution
engine, both a composite Web service to be controlled and a composite Web
service which controls it using execution control functions are executed.

The interaction control engine is responsible for coordinat ion among more
th an one instances of composite Web services based on a given choreography
because some adaptation processes require the instances to be synchronized. As
sume that two instances of the document translat ion service t ry to invoke count
(invoke) in Fig. 2 at almost the same t ime. The composite Web service in the
upper part of Fig. 2 receives the request for count (receive) that arrives first
and starts to increment the number of invocations. If the composite Web service

1 http ://wvv .activevos .com/community-open-source.php

152 NI. Tanaka et al.

,--------1 choreograPhvJ
I-J Supervision l (WS-CD~
1 -1 coordinato r T' :
1 I

: Interact ion Control Engine :

Request

-----+

'--. 1--'
1 Interaction Control 1

Composite Composite Web Service
Web service to be f+-- using execution contro l

contro lled functions

Monitor/Control

Composite web Serv ice Execut ion Engine

Fig. 3. The implemented prototype

----->
Exec ution
control

-----+
Websen';ce
;III'IIcat;OI/

Fig. 4. Choreography for definition of control protocol

receives the request from another instance of the document translation service
while incrementing the number of invocations, count (invoke) fails because it
is not waiting for the request at count (receive) .

To solve this problem, we introduce choreography, which defines the protocol
of interactions between a composite Web service which controls other composite
services and the composite Web service being controlled. We adopt WS-CDL
(Web Service Choreography Description Language) [10], a standard language for
choreography of Web services. We show an example of choreography in Fig. 4,
which defines protocol of interactions between the two composite Web services
shown in Fig. 2.

In Figure 4, a rectancle which has a word inside represents an interaction be
tween the two composite Web services. This protocol ensures that the execution
of count (receive) in the composite Web service which controls the document
translation composite Web service and count (invoke) in the document trans
lation composite Web service are processed in this order .

3 Adaptation of Composite Service Using Execution
Control

In this section, we organize various adaptation of composite Web service ex
plained in some previous works[1l,12,13,14]. The aim is to extract reusable pro
cesses for various adaptation like the composite Web service shown in the upper
part of Fig. 2.

Service Supervision Patterns: Reusable Adaptionof Composite Services 153

Some adaptation processes described in this section can be realized by the ex
isting framework, such as WS-BPEL . But it is not flexible enough to adapt WS
BPEL process to frequent change of environment or business rule by changing
the model of a composite Web service. Therefore we assume that an adaptation
process is temporarily realized by Service Supervision, and that it is ported to
the model when the adaptation process is permanently required.

3.1 Exception Handling

WS-BPEL provides exception handling mechanism. In a dynamic or open envi
ronment , however, the exception handling of WS-BPEL is not flexible enough.

Using execution control functions , we can realize more flexible adaptations as
follows:

- Recovery
Exceptions which are unexpected at the design time can be recovered by
dynamically adding processes for montoring and recovering.

- Alert
Continuous check of consistency of data enables us to detect symptoms of
exceptions and to show an alert .

- Avoid exception
We can often avoid exceptions by adding a preprocess of an input to a service
or replacing a task which may cause an exception with a human task,

- Enforcement by humans
In case that execution of a composite Web service cannot recover from an
exception by an existing recovering process, humans often need to set states
of tasks manually.

3.2 Dynamic Change

We show major adaptation processes which cover the change of requirements of
users or state of services below.

- Dynamic binding
In dynamic environment, we often need to select services at runtime . This
is achieved by getting a list of available services and setting an endpoint
address .

- On-the-fly composition
According to the operator's request, the system is often required to generate
a new process and temporarily add it into the composite Web service.

3.3 Human Involvement

BPEL4People[15] is an extension of WS-BPEL and realizes combination of hu
man tasks and Web services. Using the extension , we can define an invocation
of a human task in the manner similar to that of a Web service. When a human

154 M. Tanaka et al.

task is invoked, the task is sent to a person who is responsible for the task. The
human task is finished when the person inputs the result of the task.

However, human tasks often cause an unexpected problem due to the much
flexibility of human behavior. We show adaptation processes required to handle
the problems with human tasks below.

- Negotiation
When the result of a human task is not good enough, the task needs to be
executed again. This process often includes negotiation between the person
who performs the task and the evaluator because the evaluation can be sub
jective and the evaluator must give a concrete instruction for re-execution ,

- Flexibility control
When the granularity of a human task is coarse, a person who is respon
sible for the task can efficiently perform his task. But deviation from the
requirements of the task is prone to occur due to the flexibility. On the other
hand, we can reduce deviation by defining fine tasks . In that case, the effi
ciency often declines. Therefore we need to control flexibility by configuring
granularity of tasks.

- Guideline
When the detail of the procedure of a task is not defined, showing guidelines
can be a help for reducing deviation from the implicit requirements.

- Clarify responsibility
More than one person or organization often involve in a task. If the task
sometimes causes an exception, it is required to decompose the task in order
to clarify the responsibility of people or organizations involved.

- Reassignment Based on the performance record of a person who is respon
sible for a task or changes of business rules, we often need to change the
assignment of people to tasks. Therefore the operator needs to dynamically
configure the assingment or invoke a composite Web service which decides
the assignment .

3.4 Monitoring

An operator often needs to obtain and aggregate information of instances of
a composite Web service. However, the existing standard framework, such as
WS-BPEL, does not provide enough functions for monitoring. Therefore Service
Supervision can help the operator monitor execution states from the following
aspects :

- Aggregate state information
By aggregating information of states of tasks (e.g. assigned, running , sus
pended, etc.) over multiple running instances, operators can know load on
each Web service or a person who is responsible for the tasks.

- Macro An operator often needs to perform a complex procedure which
collects and aggregate information of running instances . Therefore we need
allow the operator to define his/her own procedure .

Service Supervision Patterns: Reusable Adaption of Composite Services 155

3.5 Mi grat ion

Migrating to a new SOA system often confuses users because procedures and
operations for the users sometimes complete ly change. The load on the users
can be reduced by incremental migration as shown below:

- Plug-in
When a user interface for humans which is used before the migration, plug
ging it into a composite Web service which are newly introduced allows
people work in a practiced man ner.
P artial reuse
People who work following a business process can be confused if the whole
business process is update at once. Therefore, we somet imes need to begin
with replacing a part of the current business process with that of new one.

- Transfer
When the model of a composite Web service is updated, a running instance
which is created from the old model is somet imes required to migrate to the
new model. Therefore we have to be able to create a new instance from the
new model and migrate the execution state of the instance of the old model
to new one keeping consistency.

4 Service Supervision Patterns

The adaptation processes descr ibed in the previous section can be realized by
combining executio n control funct ions shown in Section 2. However, the much
flexibility of the execution control functions sometimes makes it difficult to im
plement the adaptation processes because a designer usually does not have expe
rience on design using execution control functions. Therefore we propose Service
Supervision patterns, which consists of typical requirements and WS-BPEL pro
cesses using execution control function s as solut ions.

Software patterns, including design patterns, have achieved a great success in
design and ana lysis of software . Also in the area of workflow, workflow patterns

Table 2. Comparison among software patterns, workflow patterns , and Service
Sueprvision patterns

Software patterns Workflow patt erns Service Supervision pat-
terns

Problem Requirements for analy- Requirements for Requirements for adapta-
sis, development and op- construction of tion
timization of software business flow

Solution Direction of design and Activity diagram Composite service using
development execution control func-

tions
Focus Abstraction of system ar- Analysisof business Operation and lifecycle of

chitecture and design composite services

156 M. Tanaka et al.

have been proposed and they show the design of workflows which satisfy various
requirements [8]. On the other hand, Service Supervision patterns give require
ments for adaptation process as problems and composite Web services which
satisfy the requirements by combining execution control functions as solutions.
For example, the composite Web service which is shown in Fig. 2 and controls
the document translation service can be seen as a pattern which monitors the
execution and adds some processes by generalizing "count" and "setAddress".

Table 2 shows the comparison among software patterns, workflow patterns,
and Service Sueprvision patterns we propose in this paper.

Service Supervision patterns are easy for designers of composite Web services
to understand because the solutions are described in WS-BPEL processes. More
over, we need little change to port them to the model of a composite Web service
to be adapted.

A composite Web service defined in a Service Supervision pattern consists of
the following elements:

- Control constructs and activities of WS-BPEL
- Execution control functions
- Template task

A composite Web service provided as a solution of Service Supervision pat
terns runs on the same execution engine as composite Web services to be adapted.
The execution control functions are ones that introduced in Section 2. A tem
plate task is defined according to the required adaptation processes.

We describe each Service Supervision pattern below. Tasks labeled as T repre
sent template tasks. We omit activities which define dataflow for the simplicity.

4.1 Trigger Patterns

Runtime adaptations of a composite Web service are triggered when some changes
or events which require adaptation are detected. Such detection is performed (a)
at a certain point in a composite Web service, (b) continuously, (c) on operator's
request , or (d) when time-out of a task happens. The following patterns realize
the triggers for adaptations.

Pattern 1: Synchronous Watch

- Description. The task set to the template task is executed at a certain
point of the composite Web service to be adapted.

- Implementation. Set a breakpoint at the point to which some processes
should be added and set the composite Web service of this pattern as a
callback Web service.

- Example. Adding a process for validation of the result of a constituent
service and an exception handling process.

- Porting to model. Insert tasks set to the template task into the point
where the breakpoint is set .

Service Supervision Patterns: Reusable Adaption of Composite Services 157

Pattern 2: Continuous Watch
- Description. The tas k set to the template tas k is continuously executed

during the execution of composite Web service to be adapted.
- Implementation. Execute all tasks of composite Web service to be adapted

by step execution and execute the template task after each step.
- Example. Checking consistency of data handled by the composite Web

services.
- Porting to model. To add a monitor ing process to many points in a com

posite Web service seriously declines the performance. There fore this pattern
should be used to find the point where some monitor ing is required before
the model is changed.

Pattern 3: Asynchronous Watch
- Description. The task set to the template task is executed on request .
- Implementation. Start execut ion of the template task after receiving a

request .
- Example. Reporting execution state of a composite Web service on the

request by operator's request.
- Porting to model. Add an asynchronous Receive, the task set to the tem

plate task and Reply.

Pattern 4: Timeout

- Description. The task set to the temp late task is executed when a tas k
does not finish in a certain period of time .

- Implementation. Execute the target task by step and finish the instance
of this pattern by terminate, which is a WS-BPEL act ivity. If the specified
period of t ime elapses before the target tas k finishes, suspend execut ion of
the composite Web service and recover the ta rget task by the task set to the
template task.

- Example. When a service is temporari ly available or a human task is taking
too long, this pattern makes it possible to dynamica lly change services or
assignment of people.

- Porting to model. Replace step with the target tas k as asynchronous
invocation and put the composite Web service of this pattern instead of the
target task.

4.2 Evaluation and Retry Patterns

When the result of a tas k is invalid or the quality of the result is not good enough,
we need to retry the tas k until an appropriate result is obtained. We show the two
following patterns for the validat ion/evaluatio n of the result and retry.

Pattern 5: Automatic Retry

- Description. This pattern assumes that validation and retry are automat i
cally performed. After validat ing the result of a task, this pattern retri es the
tas k if needed. The composite Web service which changes the conditions of
execution of the task is set to temp late task .

158 M. Tanakaet al.

Pattern 1: Synchronous watch

Pattern2: Continuous watch Pattern 3: Asynchronous watch

Pattern4: Timeout

Fig. 5. Trigger patterns

- Implementation. Set execution point by setEP, retry the task by step, and
change of the condition of execution at the template task in loop. To restore
the execution state before retry, we introduced getState and setState.

- Example. This pattern enables us to switch a service to an alternative when
execution of the service fails. This pattern also realizes the cycle of evaluation
and change of parameters, which is shown as Program Supervision [16] .

- Porting to model. Put the task to be retried and template task in loop
and add activities which set states before retry.

Pattern 6: Human Evaluation

- Description. This pattern retries a task when the quality of the result of
the task is not good enough. This pattern assumes that both the target task
and the evaluation are performed by humans. Therefore this pattern allows
people who are responsible for the tasks to communicate with each other by
introducing a task for evaluation as a template task.

- Implementation. Instead of the task for changing conditions of execution
in Automatic Retry pattern, put the task for evaluation and communication
after step of the target task.

- Example. This pattern allows an evaluator to show the guideline for the
task to a person who is responsible for the task even if the guideline was not
defined when the model of composite Web service is designed.

- Porting to model. Put the task to be retried and the task set to template
task in loop.

4.3 Patch Patterns

The following patterns are used to make up small defect keeping the most of
initial behaviors.

Service Supervision Patterns: Reusable Adaption of Composite Services 159

0---+/ getState1 ,e"tater<>r
Pattern5: Automatic Retry

Pattern6: Human Evaluation

Fig. 6. Evaluation and retry patterns

Pattern 7: Add Alternative

- Description. This pattern adds a task which is an alte rnative of a task in
a composite Web service when a given condition is sat isfied.

- Implementation. Put the template tas k and the target task in conditional
branches.

- Example. When a Web service often causes an exception under a certain
condition, this pattern can be applied to temporarily delegate the tas k to
humans.

- Porting to model. Replace the target task with the conditional branches
defined in this pattern.

Pattern 8: Partial Execution

- Description. This pattern executes a part of an existing composite Web
service.

- Implementation. step the tasks to be executed and skip other tasks.
- Example. This pattern realizes an incremental migration to a new compos-

ite Web service.
- Porting to model. Remove the tas ks which are skipped by this pattern

from the model of composite Web service.

Pattern7: AddAlternative

~
kiP

~~
step

o
Pattern8: Partial Execution

Fig . 7. Patch patt erns

4.4 Granularity Control Patterns

The following patterns compose or decompose tasks to control flexibility of hu
man tasks.

160 M. Tanaka et al.

Pattern 9: Compose

- Description. This pattern replaces consecutive tasks with one task which
is equivalent to the consecut ive tasks.

- Implementation . skip tasks defined in the model of a composite Web ser
vice and execute the task set to the template task.
Example. This pattern is applied if the efficiency for a human task declines
due to lack of flexibility.
Porting to model. Replace consecut ive tasks with the task set to the
template task.

Pat tern 10: Decompose

- Description. This pattern decomposes a tas k into some subtasks.
- Implementation. Execute the predefined subtas ks and skip the tas k to be

decomposed.
- Example. When a task is virt ually executed by some people, this pattern

is applied to clarify the responsibility of each person.
- Porting to model. Replace the target task with the subt asks set to the

template tas ks.

Pattern 9: Compose

o+~ ... --+o

Pattern 10: Decompose

Fig. 8. Granul arity control patterns

Table 3. Possible adap tations by Service Supervision pat terns

~
Synchronous Cootln Asynchr Time Auto Human Add Part ial camp dec
watch uous onous out retry evaluat alterna eJlecuti os. amp

Adanlallon watch watch Ion live on ose

.§ ~
Reeoverv • • • •
Alert • • • •~ ~ Avoid • • • • •~ 2
Enforcement • • •

.!:: C1.I Dvnamicbinding • • •E ..
On-the-fly

~~ eomoosition • • •
Negotiation • • •l:
Control flexibilltv • • • • •c: "

'" E Guideline • • •§~
:r ~ Cia rlfuresoonsibilitv • • • •of

Reassignment • •]'" tIQ Aggregatestate infu • • •~ 'E Maero • • •c: Plug-in • • • • •0
'OJ

Reuse • • •e
'" Transfer • •~

Service Supervision Patterns: Reusable Adaption of Composite Services 161

Table 3 shows adaptat ions described in Sect ion 3 and Service Supervision
patterns which can be used for each adaptat ion.

All adaptations are t riggered by one of Trigger patterns. Using Trigger pat
te rns, the operator can easily start or stop the adaptation processes. However,
the adaptation processes have to be defined before they are applied. This is the
reason the patterns do not work well for adaptat ions which require us to define
an extreamly wide range of processes, such as on-the-fly composition and trans
fer , although the patterns can be frequently reused for rather simple adaptations
such as except ion handling.

5 Related Works

Software patterns, which describe typical problems and solutions in software
development , have been expanded against the background of complexity of re
cent software development . The most well-known software patterns are design
patterns]"] and they show means for system design based on object-oriented pro
gramming. On the other hand , van der Aalst et al. proposed workflow patterns[8],
which show requirements for const ructing business flows and activity diagrams
as the solutions. The workflow patterns focus on analysis of business, excluding
perspective of system implementation.

Similarly, Service Supervision pat terns proposed in this paper also aims at
reusing know-howabout design. But Service Supervision patterns focus on adap
tation processes which can be realized by execut ion contro l functions and there
is no previous work on reuse related to composite Web service for adaptation as
far as we know.

Several previous works have t ried to change behaviors of a composite Web ser
vice without modifying the composite Web service. Most of them have adopted
the concept of AOP (Aspect-oriented Programming).

Some works monitor the messages exchanged between services and modify
them[3,4,5]. However, the works depend on their own descriptions. This leads to
the cost of design when adaptation is ported to the model of the composite Web
service.

A04BPEL[6] enables us to insert processes described in BPEL into before or
after an activity in an existing composite Web service as a pointcut. Therefore
the processes defined for adaptation using A04BPEL can easily be insert ed into
the model of a composite Web service. But some adaptation processes cannot be
realized by the method because it does not provide execut ion control functions
such as setting execution point . The authors also introduced some applicat ions,
but they are not comprehensively organized.

6 ConcIusion

Service Supervision, which controls the behavior of runn ing instances of compos
ite Web services using execution control functions, allows us to flexibly adapt
composite Web service to changes of the environment or business rules. This

162 M. Tanaka et al.

makes const ituent Web services of a composite Web services t ransparent to users
and allows us to provide the composite Web services as a "cloud" service. How
ever, th e much flexibility of Service Supervision sometimes makes it difficult
for the designer of composite Web services to design adaptation processes due
to the absence of accumulated know-how. Moreover, it often costs to port the
adaptation processes to the model of composite Web service to be adapted.

Therefore we proposed Service Supervision patterns, which provide typical
requirements for adaptation and reusable WS-BPEL processes which implements
the adaptat ion. The cont ributions of this work are as follows:

- We organ ized various adaptation processes based on some previous works
and explained how they can be implemented using control execut ion func
tions.

- We extracted typical execut ion controls for adaptation processes and showed
how to port them to the model of a composite Web service.

The Service Supervision patterns can reduce the load on the designer who
implements adaptation processes or ports them to the model.

In futur e work, it is required to investigate the effect on the performance of
each pattern. We expect that the temporary adaptation is achieved by Service
Supervision, and then it is ported to the model when the permanent demand
of the adaptation becomes apparent. Ther efore the invest igation on the perfor
mance helps the operator decide when and how the adaptation should be ported
to the model.

Acknowledgment

This work was supported by Strategic Information and Communications R&D
Promotion Programme (SCOPE) of the Ministry of Internal Affairs and Com
munications of Japan.

References

1. Business process execution langu age for web services (BPEL), version 1.1 (2003),
http ://www .ibm.co m/developerworks/library/ws-bpel/

2. Tanaka, 1'1., Ishida, T ., :\1urakami, Y., Morimoto , S.: Service supervision: Coor
dinating web services in open environment . In : IEEE International Conference on
Web Services, ICWS 2009 (2009)

3. Moser, 0 ., Rosenberg, F ., Dustdar , S.: Non-intrusive monit oring and service adap
tation for ws-bpel. In: 17th Internat ional World Wide Web Conference (WWW
2008), pp. 815-824 (2008)

4. Mosincat , A., Binder , W. : Transparent runtime adaptability for BPEL processes .
In: Bouguettaya , A., Kru eger, 1., Margaria , T. (eds.) ICSOC 2008. L:\TCS, vol. 5364,
pp . 241-255. Sprin ger, Heidelberg (2008)

5. Baresi, L., Guinea, S., Plebani , P.: Policies and aspects for the supervision of BPEL
processes. In: Krogsti e, J ., Opd ahl , A.L., Sindr e, G. (OOs.) CAiSE 2007 and WES
2007. LNCS, vol. 4495, pp . 340-354. Springer, Heidelberg (2007)

Service Supervision Patterns: Reusable Adaption of Composite Services 163

6. Charfi, A., Mezini, M.: A04BPEL: An aspect-oriented extension to BPEL. World
Wide Web 10(3), 309-344 (2007)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J .: Design patterns: elements of
reusable object-oriented software. Addison-Wesley, Reading (1995)

8. van der Aalst , W.M.P., Hofstede, A.t ., Kiepuszewski, B., Barros, A.: Workflow
patterns. Distribut ed and Par allel Dat abases 14(3), 5-51 (2003)

9. Ishida, T .: Language Grid: An infrastructure for intercultural collaboration. In:
IEEEjIPSJ Symposium on Applications and the Internet (SAINT 2006), pp. 96
100 (2006)

10. Web services choreography descripti on language version 1.0 (2005),
http ://www.w3.org/TR/ws-cdl-l0/

11. Kammer , P.J ., Bolcer, G.A., Taylor, R.N., Hitomi, A.S., Bergman , M.: Techniques
for supporting dynamic and adaptive workflow. Computer Supported Cooperat ive
Work (CSCW) 9(3), 269- 292 (2000)

12. Miiller, R., Greiner , D., Rahm , E.: Agentwork: a workflow system support ing
rule-based workflow adapta tion. Data and Knowledge Engineering 51(2), 223- 256
(2004)

13. van der Aalst , W.M.P., Basten, T ., Verbeek, H.:N1.W., Verkoulen, P.A.C., Voorho
eve, M.: Adaptive workflow. on the interplay between flexibility and support . In:
Pro ceedings of the first International Conference on Ent erprise Information Sys
tems, pp. 353-360 (1999)

14. Han , Y , Sheth , A., Bussler, C.: A taxonomy of adaptive workflow management . In:
ACM Conference on Computer Supported Cooperative Work, CSCW 1998 (1998)

15. WS-BPEL extension for people (bpel4people), version 1.0 (2007),
http ://www.ibm .com/developerworks/webservices/library/specification/
ws-bpe14people/

16. Thonnat , M., Clement , V., Elst , J .v.d.: Supervision of perception tasks for au
tonomous systems: The OCAPI approach. In: 3rd Annual Conference of AI, Sim
ulation , and Planning in High Autonomy Systems, pp. 210-217 (1992)

Cloud Computing Platforms

Track Session 3

Self-managed Microkernels:
From Clouds towards Resource Fabrics

Lutz Schubert', Stefan Wesner', Alexander Kippl, and Alvaro Arenas/

, HLRS - Hochstleistungsrechenzentrurn Universitat Stuttgart,
Nobelstr. 19,70569 Stuttgart, Germany

{schubert,wesner,kipp}@hlrs.de
2 STFC Rutherford Appleton Laboratory, e-Science Centre,

Didcot, oxu OQX, UK
alvaro.arenas@stfc .ac.uk

Abstract. Cloud Computing provides a solution for remote hosting of applica
tions andprocesses in a scalable and managed environment. With theincreasing
number of cores in a single processor and better network performance, provi
sioning on platform level becomes lessof an issuefor future machines andthus
for future business environments. Instead, it will become a major issue to man
age the vast amount of computational resources within the direct environment
of each process - across the web or locally. Future resource management will
have to investigate in particular into dynamic & intelligent processes
(re)distribution according to resource availability and demand. This paper
elaborates the specific issues faced in future "cloud environments" and pro
poses a microkemel architecture designed to compensate these deficits.

Keywords: distributed operating systems, SOA, multi-core systems, large-scale
HPC, heterogeneous systems.

1 Misconceiving the Cloud?

Cloud Computing is often considered the future of computing platform provisioning:
reliable application hosting over the web allows easy accessibility from everywhere to
everything. Notably, however, this is a slight misconception of the actual working
focus of "cloud computing", which focuses primarily on the manageability and scal
ability aspects of hosting. Remote hosting as such (i.e. reliable server farms) is not in
itself a novelty and has been supported by multiple providers for a long time now
with remote access such as enabled by VMWare' or Remote Desktop", and replicated
virtual machines, this already provided most of the capabilities associated today with
Clouds. Only increased network and computational performance, as well as the ad
vent of simple web "APIs" have allowed the sudden success of this approach.

Virtualisation, enhanced routing, on-the-fly replication, reconfigurable resources
etc. are the core features of modern clouds and thus lead to other, more commercially

1 http://www.vmware.com/
2 http://www.microsoft.com/windows/windows-vistalfeatures/remote-desktop-connection.aspx

D.R. Avreskyet aI. (Eds.): Cloudcomp2009, LNICST34, pp. 167-185,2010.
© Institutefor ComputerSciences, Social-Informatics and Telecommunications Engineering 2010

168 L. Schubert et aI.

oriented use cases which make use of the more innovative features of cloud comput
ing. This includes aspects such as hosting of web "services" (e-Commerce) with de
mand-specific scalability and thus availability, as well as improved reliability - in
other words, the application and data is highly available, independent of problems
with the resources and amount of concurrent invocations. This becomes particularly
interesting for e-Commerce environments with a high amount of customers, such as
Amazon or eBay, which notably belong to the first entities actually making use of
cloud-like environments internally.

Many users mistake cloud computing with high performance computing and whilst
the same principles can principally be applied in the HPC environment, machine re
strictions and requirements of the respective applications only allow for a certain
degree of scalability and manageability, as replication is not easily achieved with the
amount of resources in use, and scalability in the context of HPC is dependent on the
algorithm, not the amount of requests.

Considering the current development in processor architectures and in network per
formance, future systems will effectively incorporate a cloud environment within a
single machine . Due to their nature, these machines effectively allow for both: dis
tributed / parallelised process execution (current HPC), as well as scalable and reli
able application hosting. It should be noted in this context that "cloud computing" is
not a technology as such, but rather a concept, respectively a paradigm. This paper
will therefore examine the specific requirements put forward towards hosting applica
tions in future environments, and elaborate an approach to address these requirements
using approaches from Cloud Computing , Grid and SOA.

2 From Historical to Future Systems

The current development in computing system clearly indicates that the amount of
cores being integrated into a single processor / machine will steadily increase in future
years, whilst the speed of individual cores will increase only minimally. Implicitly,
the system will not become more efficient regarding individual (single-thread) appli
cations, but will provide an improved overall performance by allowing for parallel
execution of multiple processes or threads concurrently.

Such systems are effectively identical to what was considered computer farms a
few years back, where multiple computers are hosted within the same environment
and can communicate with each other in order to coordinate and distribute processes .
The Grid and P2P computing emerged from such environments , in order to maximize
usage of otherwise unused resources (machines), e.g. during lunch-break or when no
applications are running on the respective machines. Whilst the Grid has moved to
wards a different scope of distributed computing , one can still clearly see the relation
ship to Grid, SOA and in particular clouds: managing applications in a distributed
environment so as to ensure reliability and higher performance . In particular in the
P2P environment , one particular task consisted in replicating the same application
with different configuration settings so as to produce a set of "integratable" results in
the end: this only worked for "embarrassingly parallel" tasks, but still allowed for a
definite increase in overall execution performance .

Self-managed Microkemels: FromClouds towards Resource Fabrics 169

The tasks of such systems are similar to what modern operating systems (OS) have
to face in multi-core environments: distribution of processes, according to individual
schedules, as well as integration of results and management of cross-machine calls .
As opposed to P2P systems with typically little to no requirements towards synchro
nization of the tasks, Grid systems investigated into coordinated execution of
processes in distributed environments, whilst finally clouds are little concerned with
distributed execution, but with distribution and scheduling of individual processes.

An efficient multi-core operating system should obviously not be restricted to pa
rallel execution of standalone processes (thus reducing the scheduling problem), but
should particularly support parallelized and highly scalable (multi-thread) processes.
Accordingly, such a system needs to draw from all of the paradigms and concepts
above in order to provide the necessary scalability, reliability and manageability of
distributed processes in distributed environments.

2.1 Classical Approaches

In order to identify the specific capabilities to be fulfilled by future systems, it is re
commendable to examine the classical concepts towards managing distributed envi
ronments in more detail so as to make best use of the multi-core capabilities:

Grid Systems. The modern grid integrates different resource types on a service level,
i.e. principally follows the concepts of Virtual Organisations [1, 2], where the
combination of individual services leads to enhanced capabilities. However, the Grid
does provide means for common interfaces that allow the coordinated integration of
heterogeneous resources for higher, abstract processes and applications.

Distributed Applications. Some computational algorithms can execute logical parts
in parallel, so as to improve the overall process through multiple instantiation of the
same functional block. One may distinguish between optimal parallel code (no data
exchange between the blocks) and distributed applications that share some kind of
data. Of particular interest thereby is the capability to control communication and to
deal with the scheduling issues involved in multiple resource exploitation.

Cloud Environments. In a world of high connectivity , not only scalability of
individual (distributed) applications is relevant, but also scalability in the sense of
accessibility to a specific service I resource, i.e. replication of individual processes
according to demand. This requires enhanced control over the resources and
maintenance of multiple, potentially coupled instances of processes and data.

2.2 Scoping Future Multi-core Systems

As described above, the current cloud approach is insufficient to address the require
ments of future multi-core systems, respectively might become obsolete with the
capacities of such systems. However, in order to exploit the capabilities of multi-core
systems, and in order to address the respective requirements towards future applica
tions, clouds and related approaches provide a strong conceptual basis to realize such
future support.

In light of the development of middleware and hardware, multi-core systems
should be able to support the following capabilities :

170 L. Schubert et aI.

Concurrency. The most obvious capability (to be) fulfilled by multi-core systems
consists in the "real" concurrent execution of processes and applications, i.e. running
(at least) one process per core so that they can be executed in real parallel instead of
constant switching - however, each core may host multiple processes which are
executed in a multitasking manner. The scheduling mechanism will thereby decide
how to distribute processes across cores so that e.g. higher priority jobs compete with
fewer processes on the same core, or get more time assigned than other jobs .

This feature is a simple extension to classical multitasking operating systems
that assign jobs with different time slots in the overall execution schedule according
to their respective priority. All current main stream operating systems choose this
approach to exploit the multi-core feature for performance improvement, yet this
approach only improves the net performance of the whole system, not of single
processes.

Parallelism. More importantly than distributing individual processes to single cores,
an application or job may be separated into parallel threads which can be executed
concurrently at the same time. As opposed to concurrent individual processes, parallel
processes share communication and information directly with each other - depending
on the actual use cases either at nominated integration points, "offline" (i.e. via a
common stack) or at even based, at random, unpredicted points in time. This poses
additional constraints on timing and distribution of job instances / threads in the
environment in order to ensure communication, respectively to reduce latency.
Individual infrastructures thereby have a direct impact on this issue.

Typically, it is up to the developer to respect all this aspects when coding distri
buted applications. However, the requirements put forward to the developer will in
crease in future systems due to multiple reasons: heterogeneous resources will require
dedicated code; concurrent processes will put additional strain on communication
management (see above); processes and applications will compete with each other
over resources; latencies will differ between setup and may thus lead to different
communication strategies to be employed.

As the computing system grows and the complexity increases, the developer needs
a simpler way to exploit the infrastructure with his / her code. Implicitly the infra
structure needs to provide stronger means and support the parallelization work.

Scalability. Parallel processes require that part of the code / a thread will be executed
multiple times concurrently - in some cases the number is directly defined by the
infrastructure (number of computing cores available) and not (only) by the
application. In addition to this, in particular in the server domain, the same process
may have to be instantiated and executed multiple times concurrently, e.g. when
multiple invocations are executed at the same time.

Multi-core processors allow real parallel execution of one instance per core. Ob
viously, the system is restricted by the number of cores and the processing speed, with
any number of instances higher than the number of cores impacting more and more on
the reaction. With additionally concurrent jobs competing for the computational re
sources, managing scalability becomes a complicated aspect of both cloud and server
provisioning, but also for specific common user cases, in particular where the
processes have high computational requirements.

Self-managed Microkernels: From Clouds towards Resource Fabrics 171

This aspect also strongly relates to data management issues involved in parallelism
(cf. above), as some instances will have to share data between them, whilst others will
host their own data environment (often also referred to as "stateless" vs. "stateful").

Reliability. Server architectures often use mechanisms of data and process replication
in order to increase the respective reliability . Additional approaches include dedicated
checkpointing and rollback. Whilst in classical "common" usage scenarios the cost
for reliability was too high for the benefit gained from it, in particular cloud, server
and HPC environments strongly require reliability features.

Depending on the relevance of the application and data, multi-core platforms
should hence be able to support reliability.

Dynamicity. With multiple processes competing over the same resources (instead of,
as in most cloud, server and HPC use cases typically only hosting one dedicated job),
different resources will become available and unavailable over time, to which the
distribution of processes must adapt. This ranges from simple (re)distribution of
processes across the infrastructure to up- and downscaling of specific instances (see
parallelism and scalability) .

Notably, the degree of necessity per requirement and the degree of support by the
system itself depends on the actual usage scenario . Nonetheless, in order in particular
to ensure portability of applications across platforms and systems, i.e. in order to
allow developers to provide their code equally as service, process or web application,
it is mandatory that the essential basis of the system is identical.

3 TheMonolithic Mistake

The current approach to dealing with multiple computational resources in a tightly
coupled system consists in one central instance controlling all processes across these
resources, i.e. all scheduling and communication is essentially centralised . It is nota
ble that loosely coupled systems typically host communication support and essential
system control features per node (as opposed to core), whilst only overall scheduling
is centralised in the cluster. This decision is basing primarily on communication la
tency which will seriously impact on the performance of HPC systems and even
though latency is much diminished in tightly coupled systems, the central instance
will act as a bottleneck that potentially can lead to clashes, unnecessarily stalling the
individual processes :

Monolithic kernels are often said to scale well with the amount of processes on
many processors (see e.g. [16]). It should be noted though that this is not identical to
scaling well with the amount of processors . Most tests are executed on a limited num
ber of cores where the increment in the number of processes effectively shows similar
behaviour in single-core machines, i.e. scalability is primarily restricted by memory
and processor-speed, not by the operating system itself, as the degree of concurrency
and hence the additional strain on process management is comparatively low.

The main reason for this consists in the fact that the as primarily deals with sys
tem requests, context switches and device access, not with the process itself. In other
words, as long as the processes do not require something from the as and whilst the
scheduler does not demand a context switch between processes, the as' tasks are not

172 L. Schubert et aI.

affected by the amount of processes . Obviously with an increase in the number of
jobs, the amount of requests increase - notably, in a single core system the average
amount of context switches does not increase as they are defined by the scheduling
algorithm and only indirectly by the amount of processes (depending on the schedul
ing strategy).

Corell

1 Processl.l

"0"

P2.1

e.g.conte,rswitch

Processl .2

response/context

P1.3

queuedrequesf

P2.2

Time

Fig. 1. System requests of concurrent cores mayclash if they occur within the sametimeframe
(time-relationships exaggerated)

With the increasing amount of cores the operating system in particular has to deal
with more system requests - however , this alone would not impact drastically on the
performance, as system requests are comparatively few and quick as opposed to proc
ess execution. Hence, scalability would only be affected if more system requests need
to be handled than a single core can execute . More drastic , however, is the impact of
system request clashes which arises from the concurrent nature of process execution:
as depicted in Fig. I, a second core may request an operation from the operating sys
tem whilst the latter is still dealing with a request from the first core.

Under normal conditions these clashes hardly affect the overall performance, as
they occur rarely and as the delay caused by it is comparatively short. However, with
the number of cores rising to a few thousands, clashes become more regular , thus
leading to a significant overall delay in process ing and hence decreasing the effective
performance per core.

Fig. 2 depicts this issue in an exaggerated fashion for the sake of visibility': most
monolithic kernels (and in particular most developers) assume that processes are exe
cuted in a fashion similar to Fig. 2 above , i.e. with short gaps between processes
caused by context switches , respectively by other system requests. In reality, how
ever, these requests overlap and causing the OS to queue the messages and execute
them in sequential fashion , thus delaying process execution even further. Fig. 2 below
indicates how these overlaps summarise during a given timeframe, whereas dark
blocks depict the delay caused in addition to the (expected) system request execution
time and the arrows reflect the accumulated delay per core within the timeframe . Note
that we assume in both cases that a full core ("0") is dedicated to OS execution for the
sake of simplicity .

3 Actual figures will be published in a separate paper - please contact the authors for more
information.

Self-managed Microkemels: FromClouds towards Resource Fabrics 173

Fig. 2. Multiple processes executed in real parallel lead to significant process delays due to
overlaps in systemrequests - the dark blocks denote additionaldelays, the arrows reflect the
full delayin the timeframe. This figure assumes that one core ("0") is designated completely to
the operating system.

Obviously, this impact depends directly on the amount of cores and the number of
processes running per core. With an expected number of thousands of cores in the
near future, the monolithic kernel will become a bottleneck for concurrent processes.

In order to overcome this effect , each core must hence maintain enough informa
tion to allow execution of main and repeating system requests. This puts additional
constraints on the scheduling and the memory management system - in particular
since the actual memory per core is still comparatively small in common multicore
systems. With the current communication structure in multicore processors, it is also
impossible for individual cores to access the memory extension (L2 cache) without
going via the main controller, and thus automatically blocking access for other proc
esses, so that the same clash situation arises again (see e.g. [3]). Even though parallel
memory access is being researched, a good strategy for exploiting the level I cache is
still required in order to maintain a low latency .

Of course, there are further issues that impact on the performance of monolithic
systems - particularly worth mentioning are distributed scheduling in centralised
systems and the tight hardware binding : in heterogeneous, large-scale systems, addi
tional overhead has to be put on the main instance, in order to maintain processes and
resources . In [7] we discuss the concepts of application execution across distributed
resource fabrics (similar to clouds), with a particular focus on aspects related to
scheduling and dynamic infrastructures (as opposed to the kernel structure) .

4 Moving on to Micro-kernels

It has often been claimed that the messaging overhead caused by the component
based segmentation of the micro-kernel approach impacts stronger on performance
than the centralistic approach pursued by monolithic systems [4]. This is generally
true, if one takes an essential centralistic approach with the microkernel architecture
too. In essence, such an approach is identical to a monolithic system with all commu
nication having to be routed via a central instance - with the additional overhead of

174 L. Schubert et al.

complicated messaging protocols. However, this is essentially a specific use case of
the microkernel architecture where the monolithic kernel is basically structured ac
cording to the Object-Oriented Programming (OOP) and Service Oriented Architec
tures (SOA) paradigm. It does not take the full consequences from the microkernel
approach though:

4.1 SOA and Segmentation

Though SOA and OOP are related, one of the core differences consists in the commu
nication connection between components: in general, OOP assumes that all compo
nents are hosted locally on the same machine, whilst SOA is not restricted to specific
communication models - in fact, there is a certain tendency to assume that compo
nents are deployed on different resource. With respect to microkernel architectures ,
this implies in particular that functionalities can be separated not only "methodologi
cally" but also with respect to their distribution across resources. Or more specifi
cally: each core can host part of the operating system.

Typically , in modern processor architectures , one must distinguish between hierar
chical internal memory (Ll & L2 cache) and external memory. Even though external
memory is fast, its latency is too high for efficient computation (the processor being
faster than the memory) and it brings in yet another bottleneck factor, as the cores
cannot directly access the memory individually , but have to be routed via a processor
central controller (cf. Fig. 3). Future systems will allow for more flexibility with this
respect, i.e. by granting parallel access to the external memory [5] - however, the
main issue, latency, will still apply.

To reduce latency and thus improve performance of the system, the full execution
environment should be available in level 1 cache, so that calls and jumps can be proc
essed locally without requiring access to external memory. This is the ideal approach
for single core systems, where changes in the memory structure do not affect other
processes (on other cores) . However , the main problem is not posed by the synchroni
sation between individual memory views, but in particular by the restriction in size
per Ll cache - in particular with the growing amount of cores , cache memory impacts
heavily on the price of the processor. In order to host the full execution context, how
ever, the cache would have to cater for a) the full process code, b) the application data
and c) the operating system or at least all exposed functions and methods. Together,
this exceeds the limits of the cache size in almost all cases.

This is a well-known problem in High Performance Computing, where a particular
challenge consists in identifying the best way(s) to distribute and access application
specific data. As the cache in supercomputing nodes is way larger than the one in
common multi-core systems, the thread or code part is typically fully hosted in the
cache, without having to think about further split-ups. As opposed to this, however,
system calls will all be routed to the main node, as this is the classical monolithic OS
approach (cf. above).

The main idea of Service Oriented Architectures , similar to OOP, consists in split
ting up the main process into individual methods, functionalities and sub-processes
that can principally be hosted in different locations. The main challenge thereby con
sists in finding a sensible block size that is not too small so as to create messaging
overhead and not too big so as to impact on flexibility again - typically a logical

Self-managedMicrokemels: FromClouds towards Resource Fabrics 175

Fig. 3. The architecture of a multi-core & -processor system (adapted from [3])

segmentation provides the best results in this context. The same principle can be ap
plied to data segmentation and is principally applied in distributed data management,
though typically the segmentation criterion is comparativel y arbitrary and not related
to data analysis.

By applying SOA parad igms to both code and data, the core cache can be filled
with smaller parts rather than with the full execution environment, which would ex
ceed the available space. Obviously, this is not a general solution though, as it imme
diately poses the following problem s:

I. Dynamicit y: during normal execution , the process will jump between methods of
which only parts are loaded in memory, so that constant loading and unloading has
to take place.

2. Dependencies: code and data stand in a direct relationship, i.e. data access has to be
considered when separating code and data blocks.

3. Integrity : with multiple code segments accessing the same data blocks and poten
tial replications of the same data, updates need to be communicated in order to en
sure integrity of the process' behaviour

4. Distribution : segmented code is not necessarily executed and loaded in a strict
sequential fashion anymore - accordingly, multiple cores may host parts of the
code, replicate data etc. In order to ensure integrity , dependencies and so as to ac
tually improve performance, this distribution needs to respect the process' restric
tions, requirements and capabilitie s.

4.2 SOA and Operating Systems

As noted, micro-kernel operating systems principally follow an object (or service)
oriented approach where functionalities are segmented into libraries with flexible

176 L. Schubert et aI.

communication interfaces. This allows on-demand loading of libraries according to
need, as well as distribution across multiple cores for more efficient execution. In
other words, each core's cache may host part of the OS' functionality according to the
respective processes' needs. This effectively distributes the load of the operating
systems on cache and core across the system and, at the same time, increases the
availability of system functionalities for the executed processes, thus improving per
formance and reducing the risk of clashes caused by procedure calls (cf. section 3).

Since segments can be replicated, essential, recurring functionalities (such as vir
tual memory management) can be hosted on each core at the same time so that no
bottleneck issue arises directly. However, any access to remote resources and in this
case including "external" memory (cf. section 4.1), will be subject to the same mes
sage queuing problems (and thus bottlenecks) as calls to a centralized operating sys
tem. Regarding actual physical devices (such as printers, hard drive, network etc.), the
according latency is typically so high that delays are expected anyway. As for re
sources with "lower" latencies (such as external memory in this case), replication and
background updating strategies reduce the risk of bottlenecks and improve access. By
estimating future data access, data can be loaded in the background thus further re
ducing the delay caused by loading and unloading memory.

Fig. 4 illustrates the assignment of logical process blocks and data segments to the
cache of individual computing units of a multi-core processor (cf. Fig. 3). Note that a
full distribution is not necessarily the most efficient way to handle a single, non
parallel process: as all code blocks are executed in a sequential fashion, cores would
either idle whilst they wait for the respective block to get invoked, or switch between
different assigned and scheduled process blocks of the respective core.

DalobIDck 1
Process 1

Microkemel

MemoryManager

Process Manager

Segment 3

Fig. 4. Distributing Operat ing System, process and data block across cores

Self-managed Microkernels: FromClouds towards Resource Fabrics 177

Hence, it is most crucial to find the best distribution of a) a single process' code
and data blocks with respect to their interaction with one another, their invocation
frequency and their respective resource requirements (see below), b) operating system
unit with respect to their relationship to the code blocks, i.e. which functionalities are
required by the respective process partes) and finally c) overall processes and operat
ing system capabilit ies to make the most of common requirement s (e.g. towards capa
bilities) and adhere to the overall scheduling and prioritization criteria .

5 Principles of the Service-Oriented Operating System

Though we focus particularly on the multi-core, i.e. tightly coupled use case here in
this paper, the principle communication modes between the distributed components
actually depends on the setup, where obviously higher latency communication im
pacts on the distribution of blocks across the infrastructure (in order to meet the inter
action requirements).

In this section, we will discuss the principle behaviour of SOA based micro
kernels, with a specific focus on the segmentation of code and data according to rela
tionship information, requirements and restrictions .

5.1 Microkemel Base Structure

As noted, the microkernel structure is component-based , i.e. segmented into logical
functional units where each "component" fulfils essential capabilities for specific
tasks. For example , virtual memory management, device management, execution
management etc. all build units of their own, that may even be further sub-segmented,
respectively that can be adapted according to specific parameters - likewise, e.g. a
local virtual memory manager instance only needs to maintain information relevant
for hosted process parts and the device manager only needs to provide interfaces to
devices actually required by the local processes etc.

At process load time. the requirements of the respective process are retrieved re
spectively analysis is initiated (cf. below) and the according operative components
will be shifted to the core along with initial data and assigned code block. Note that if
microkernel components are already assigned to the respective core, that adaptations
may be needed to reflect the new requirements. In principle, each context switch
could rearrange the local microkernel component arrangement - obviously, this would
cause unnecessary load and the main task in identifying potential segmentations con
sists in reducing such overhead.

The space in this document is insufficient to represent the full architecture of a
SOA based microkernel operating system (short S(o)OS: Service-oriented Operating
System) - for more details please refer to [7, 9]. Instead, we will focus on one of the
core components only, namely the virtual memory manager:

The virtual memory manager is hosted on almost all cores - it is responsible for
virtualising the infrastructure per process (execution environment) and for analyzing
the code behavior. In essence, it is a dynamic routing mechanism which forwards
requests to and from the code to the respective location in the external memory.

178 L. Schubert et aI.

Distributed process manager maintains a high level overview over the processes
and control distributed execution (i.e. passing the execution points between cores
whilst maintaining the execution context).

Micro schedulers replace the centralized scheduler and are responsible for schedul
ing the processes per resource, rather than for the full system. Micro schedulers are
aligned to the overall priority and scheduling assignment.

Virtual device controller provides a virtual interface to resources of any kinds to
allow the process to access resources without having to implement the protocol details
- this is similar to e.g. the Hardware Abstraction Layer of Microsoft systems, but acts
on top of the va manager to allow remote integration independent of the underlying
communication protocol.

110 manager, like in any other operating system, provides the communication inter
face between resources. It incorporates different communication layers, thus integrat
ing tightly e.g. into the distributed virtual memory (see above).

5.2 Relationship Analysis and Distribution

The main important feature to enable service oriented microkernels as described
above consists in the capability to split code and data into meaningful blocks that can
be hosted by individual cores, respectively fit into their cache. As this segmentation
must be dynamic, to meet the (changing) requirements and constraints of the execu
tion system, the according distribution depends only secondarily on the information
provided by the developer, even though programming models such as MPI [6] foresee
that individual methods can be distributed and that specific communication modes
exist with and between these segments. In order to increase performance and capabili
ty of such distributed models, new programming paradigms will be needed - as this is
of secondary relevance for this paper, the according findings will be published in a
separate document (see also [7]). We therefore assume in the following that no addi
tional information has been provided by the developer, even though the model de
scribed below principally allows for extended programming annotations.

Code and data segmentation follows the principle of graph partitioning whereas
nodes represent code / data blocks and edges their relationship with one another. As
the code has already been compiled, i.e. since the source code is not available for
structural analysis, segmentation must base on "behavioral" blocks rather than me
thods and class structure. At the same time, this provides better relationship informa
tion than pure code analysis, as frequency of invocation is often determined by envi
ronmental conditions, events, parameters etc. In order to analyze and obtain this kind
of information, all code is enacted within a virtual memory environment, where
access to data and other code areas is routed via extended paging information. This is
principally identical to the way any modern operating system treats memory.

By applying a divide and conquer approach, the virtual memory is divided into log
ical blocks that represent the code's "typical" execution path and its relationship to
data, system calls and other processes (cf. Figure 5, left). Such information is gained
by following the calls and read / write access via the virtual memory. This relation
ship information can be represented as a directed graph (cf. Figure 5, right), whereas
an edge between code nodes implies invocations, respectively jumps, whilst an edge

Self-managed Microkemels: From Clouds towards Resource Fabrics 179

to a data node represents a write action, respectively an edge from such a node
represents read access. By analyzing access, invocation and access frequency, the
graph can furthermore be annotated with a weight (w) representing the likelihood of
one node calling / accessing another, as well as a frequency if) that designates how
often the respective code is accessed during a given timeframe at all (note that this
information can principally be derived from a full invocation graph and the according
weights of the nodes).

Virtual Mem ory

Address Add.lnf. Type
acc~from:

&,000006OO
&XOOOOOCOO
&xOOOOOFOO

calls:

&XOOOOOOOO &x0002A800
&,OOIDIFOO

readsfrom;
&xOOOlIFOO
&.ooo8Af30 Process 1

W!"lt~to:

&.ooo8Af30

&. 00000100 accessedfrom:

&.00000200 &,000008OO

&.00000300
jumps:o :

&)(000006OO ..

&.00000400
&.00000500
&.00000600
&.00000700
&.00000800
&.00000900 Process 2
&xOOOOOAoo

...

...

Data

System etc.

Pl.B1

Pl.B2

1:0.

} P2.B1

~ o.ai
D.B2

>svsi

Fig. S. Annotated memory and relationship analysis. f stands for the "frequency" of execution
in a given timeframe and w for the likelihood that the caller invokes the respective node.

Implicitly, the information exactness increases over the amount of executions and
during the time actually using the respective processes or applications. It is therefore
recommended to expect a minimal number of invocations or wait until a certain sta
bility of the graph is reached before actually applying the segmentation and distribu
tion - even if this means that the infrastructure cannot be optimally exploited in the
beginning. Otherwise, there is a high risk that additional code movements will pro
duce more overhead than gain.

Principally, such annotation data could be provided by the developer (cf. com
ments above), but this would exceed the scope of this paper.

5.3 Code and Data Segmentation

As stated, code and data needs to be segmented in a fashion that meets multiple re
quirements and constraints, such as cache size, relationship with data and other code

180 L. Schubertet al.

(including system calls) etc. so that the unnecessary overhead on the core is reduced.
Such overhead is caused in particular by loading and unloading context information ,
processing message queues due to centralisation and so on. Ideally, all processes, all
their contexts and all according system data fit into the cache of the respective core
this, however, is most unlikely. Therefore , the segmentation must find a distribution ,
where common requirements of concurrent processes are exploited and where rela
tionships between codes and data are maintained to a maximum.

Figure 5, right side designates such a potential segmentation given the relationship
as stated in the table (Figure 5., left) and the temporal information represented by f
(frequency of execution in a given timeframe) and w (likelihood that one code calls
another code block, respectively accesses a specific data area). The figure already
indicates some of the major concerns to be respected in this context, such as shared
data segments, concurrent invocations, cross-segment communication etc.

As it is almost impossible for the core cache to hold all the code blocks, all related
data (including global variables) and the according system processes at the same time,
the micro kernel has hence to account for the following potential issues:

• Dynamic (un)loading of process blocks is normal behavior for all operating sys
tems executing more processes than fit into memory. It involves all the issues
of context switching plus overhead for load / memory management.

• Replication and hence consistency management of shared data across different
caches. Background and / or dedicated synchronization needs to be executed in
order to keep consistency. Timing vs. potential inconsistency is important in
this context and the relationship analysis information can be employed to iden
tify the least amount of synchronization points. Data consistency is covered
substantially in literature though and will not be elaborated here (e.g. [14]
[15]).

• Concurrent usage of access limited resources (e.g. hard-drive) pose issues on
consistency and cause delays in the executing process. In order to reduce de
lay, the process is often handled by separate threads - in the case of multi-core
processors, these threads can be handled like separate processes with the addi
tional relationship information in the respective process graph.

• Queuing and scheduling is in principle no different to other OS [8] - however
self-adapting microkernels have the additional advantage that they can rear
range themselves to process queues faster, given that they do not compete for
restricted / limited resources .

• Cross-segment communication, as opposed to the single-core approach, requires
dedicated communication points, channeling of messages, as well as their
queuing etc. Similar to limited resources, data consistency etc. communication
between segments may cause delays due to dependencies .

The main issue in executing segmented code and that also causes problems in manual
development of distributed programs consists in the delays caused by communication
between threads - partially due to latency, but also due to the fact that processes do not
send / require information exchange at exactly the same point, so that delays in re
sponse, respectively in reception. MPI (Message-passing Interface) [10] is one of the
few programming models dedicated to handling the communication model between
blocks and similar principles must be applied in the case of automated segmentation.

Self-managedMicrokemels: FromClouds towards ResourceFabrics lSI

Efficiency may be slightly increased by executing other processes whilst the re
spective thread(s) are put into a waiting state - accordingl y, the amount of communi
cation has to be kept at a minimum. In segmented (as opposed to parallelised) code,
the main communication within a single process consists in passing the execution
environment between blocks, and system calls. As opposed to this, cross-process
communication is comparatively seldom.

5.4 Self-adaptive Microkernels

As noted, the main issue to be addressed by the OS (respectively the kernel), consists
in reducing the communic ation and the context switching overhead, respectively
keeping it at a minimum. Since the two main causes for this overhead consists in
passing the execution point between code segments and making system calls - and
thus implicitl y accessing resources, including the virtual memory - the most strongly
related code parts should be made locally available, whereas lower-level cache is
preferable over higher-level one, as latency increases over distance (level).

The segmentation must therefore find the best distribution of code blocks accord
ing to size of cache and their latency - in other words, frequent invocations and strong
relationships should be located closer than loosely coupled blocks. This does not only
apply to process specific code and data, but implicitl y also to system calls - in par
ticular since essential capabilities (virtual memory, messaging etc.) are required by
almost all processes to execute smoothly in a potentiall y dynamic environment where
locations (in particular in memory) are subject to change.

In the classical OS approach, as noted, the main kernel instance (located on any
one core) is responsible for handling such requests, leading to additional messaging
overhead, conflicts and extensive delays. With the more advanced dynamic approach
as suggested here, the kernel can provide partial functionalities to the individual
core ' s environment, where it sees fit. This segmentation is basing on the relationship
information as described above - however, since the kernel is more sensitive to exe
cution faults and since it also requires that specific functionalit y is available and can
not be routed to another code location, such as the capability to route in the first
instance, some segments need to be made available together . Furthermore, since the
virtual memory is enacted by the kernel itself, relationship information is generally
not maintained about the kernel in order to reduce overhead .

Instead, the kernel is structured in a fashion that adheres to the main principles of
SOA: atomic, logical functionality groups; minimal size; common interfaces and
protocol-independent communication. By identifying the direct entry points of the
process into the system kernel (i.e. system procedure calls), the segmentation method
can identify the system capabilities that need to be provided in addition to base capa
bilities, such as virtual memory and communication handling. Depending on the sys
tem calls needed by the process, additional segment s can be identified that need /
should be provided with the sub-kernel in the respective core ' s cache - the primary
restriction consisting in the size of the cache.

Sub-kernels will only maintain memory information related to the specific proc
esses, in order to reduce the memory size required . Similarly, only essential,
frequently required functionalities will be hosted in the same cache. The according
selection of kernel methods bases primarily on predefined architectural relationship

182 L. Schubertet aI.

similar to the one depicted in Figure 5 - the fully detailed kernel architecture relation
graph will be published in a separate document, as it exceeds the scope of the current
paper.

Context switches are particularly critical with OS methods, as no higher-level
management system (i.e. the kernel) can supervise the process at this level. As
switches on this level add to the delays caused by context switches per core, the
amount of changes in the sub-kernel infrastructure per core should be kept to a mini
mum. Implicitly, the distribution of processes across cores does not only depend on
relationships between segments and the size restrictions of the according cache, but
more importantly on the functional distribution of sub-kernel segments. In other
words, the relationship to system procedure calls and the according distribution across
cores plays an essential role in the segmentation process, whereby the amount of
switches between sub-kernel routines should be kept to a minimum.

Each system procedure call can therefore lead to one of the following three types
of invocation:

1. Local processing using the cache of the respective core - this is the most efficient
and fastest call, but leads to the same consistency issues as segmented processes do

2. Local processing with context switching - in this case the call is executed by
the same core that processes the invoking procedure, but must load the system pro
cedure from central memory (or another location). This reduces the consistency
problem, as the context switches can update the memory, but it leads to increased
delays in the execution of the invoking procedure

3. Call forwarding to the main kernel's core - system procedure calls can also be
forwarded to the main kernel instance, just like in monolithic instances. Obviously
this loses the advantage coming from a distributed kernel, namely obstructing mes
sage queues and concurrent call handling. By reducing the average number of
"centralised" system calls, however, the risk of conflicts decreases accordingly (cf.
Section 3). Since such call handling comes at the cost of higher latency, it is gener
ally recommended to reserve this for background calls (that can be executed in
parallel and may be identified in the dependency graph). In all cases, the OS must
be able to precedence "active" processes over "waiting" ones, e.g. through an
event-based system - a detailed discussion of these mechanisms will be published
separately.

6 Local Private Clouds (or Micro-Clouds)

As has been mentioned in the initial chapters, current approaches towards cloud sys
tems all take a high-level approach towards resource management, i.e. they assume
that the operating system handles simple multi-core platforms and that main cloud
features act over multiple instances (PCs, Servers) rather than over multiple cores as
such. Implicitly, most cloud systems only address horizontal elasticity - process / data
replication on multiple systems - and only little vertical elasticity - extending the
amount of resources vested into a single instance, though notably the according scale
will have to be applied to all horizontal replications too.

The biggest business motivation for outsourcing to clouds at the moment being that
equipment and maintenance of a local resource infrastructure (private cloud) is too

Self-managed Microkernels: FromClouds towardsResourceFabrics 183

costly. However, such assessments forget about the current development in current
Microsystems leading to unprecedented resource availability even in desktop pes.
This poses three issues : I) outsourcing to public clouds will only be of interest for
large scale applications, 2) applications and services must foresee their own (vertical)
scalability already at development time, whereas only little "common" programming
models are available to this end , and 3) scalable execution on local infrastructures
requires new OS models.

This paper presented an approach to exploit the specific features of multi-core
systems in a way that enables cloud-specific capabilities on a single (multi-core)
machine :

6.1 Elasticity in Self-managed Microkernels

The core feature of selfmanaged microkernels as presented in this paper consists in its
capability to adjust the distribution of code and data segments according to resource
requirements and availability. By updating the relationship graph frequently and relat
ing individual graphs (per process) with one another, the system can adjust the vertic
al scale to reflect the current requirement of the process in alignment with other
processes and resource availability. Since the principle of service oriented operating
systems also enables enhanced programming models, vertical scalability can both be
exploited for more efficient data throughput, as well as for multiple instantiation of
individual threads with shared, as well as distributed memory. Such threads can be
dynamically instantiated and destroyed by the system, but the proce ss itself must still
be capable to deal with a dynamic number of concurrent threads. Optimally
parallelizable code , i.e. algorithms that execute calculations on separate data instances
and which results' are integrated only after execution, are ideal for such usage
typical examples for such applications are 3d renderers, protein folding etc. [II]
[12] [13].

Horizontal scalability in a multi-core environment is only limited by the number of
cores - similar to the limitation of yesterday's web servers that merged multiple mo
therboards ("blades") into a single interface. As discussed, multiple instantiation au
tomatically leads to the problem of consistency maintenance, which has to be com
pensated by complex data management mechanisms which lead to additional laten
cies, as they act on a higher level than the processes themselves. Even though service
oriented operating systems cannot handle complex differentiation and merging strate
gies, they can nonetheless support data consistency management through background
synchronization thus ensuring that multiple instances have access to principally the
same data body.

6.2 Open Issues

Service-oriented operating systems and self-managed microkernels are still research
issues and as such, many challenges remain incompletely solved, such as security
aspects and reliability:

184 L. Schubert et al,

Security: since service oriented operating systems act below the level of virtual
machines (but on top of virtual resources), they implicitly do not support segregation
into secure, individual execution environments. All top layer security can be provided
in the same fashion as in classical, non-SOA operating systems, though kernel-near
security (message encryption etc.) may need further investigation, considering the
dynamic distribution of processes and sub-kernel modules across cores.

Reliability: self-managed microkernels can principally increase reliability through
improved data and code management which allows even dynamic (re)distribution of
code, thus dealing with potential issues. However, main reliability issues arise from
hardware faults which cannot be foreseen, therefore typically being addressed by
means of replication mechanisms. Though service oriented OS support replication
mechanisms, it is typically the whole system that goes down and not just a single
core, so that cross-system mechanisms need to be employed. In [9] we discuss the
principles of a distributed virtual memory to enable distributed execution and indicate
how replication across systems may be realized - however, such mechanisms are still
subject to research.

6.3 Summary

The self-managed microkernel approach as presented in this paper is taking cloud
concepts to a core level in future tightly coupled systems, thus providing elasticity for
large scale systems, as well as means to deal with dynamic and heterogeneous infra
structures. This will not only allow common users and providers to make use of cloud
features in simple, smaller sized infrastructures, but also enable new means to write
and execute distributed applications in dynamic environments.

Multicore systems for common usage are comparatively new on the market and
distributed computing platforms so far have mostly been an issue for high perfor
mance computing developers. With the trend of integrating more and more cores into
a single system, the average developer is now faced with similar issues than HPC
programmers were before and who have realized their own specific programming
models to realize these issues. The self-managed microkernel approach simplifies this
problem by providing new means to develop distributed applications that allow for a
certain degree of self-management, namely cloud capabilities .

At the same time, many issueshave not yet been fully researched in this area and
since furthermore most approaches only consist of conceptual models so far, actual
benchmarks still have to validate the approach and, what is more, define the fine
grained parameters to identify cut-off points in code / data segmentation, as well as
the according dynamicity.

Business benefits for such a system are obvious, yet not all of the according re
quirements have been addressed so far, since many of them require that a stable base
system exists first. It is e.g. not sensible to elaborate authorization mechanisms yet,
when not all implications from code segmentation have been fully elaborated - as
such, security could be tightly coupled with the main kernel instance, or be dynami
cally distributed like other sub-kernel modules.

Self-managed Microkernels: From Clouds towardsResourceFabrics 185

References

I. Saabeel, W., Verduijn, T., Hagdorn, L., Kumar, K.: A Model for Virtual Organisation: A
structure and Process Perspective. Electronic Journal of Organizational Virtualness, 1-16
(2002)

2. Schubert, L., Wesner, S., Dimitrakos, T.: Secure and Dynamic Virtual Organizations for
Business. In: Cunningham, P., Cunningham, M. (eds.) Innovation and the Knowledge
Economy - Issues, Applications, Case Studies, pp. 1201-1208. lOS Press, Amsterdam
(2005)

3. Intel, IntelWhite Paper. An Introduction to the Intel® QuickPathInterconnect(2009),
http ://www.intel.com/technology/quickpath/introduction .pdf

4. Lameter, C: Extreme High PerformanceComputing or Why Microkernels Suck. In: Pro
ceedingsof the Linux Symposium(2007)

5. Wray,c.:RamtronAnnounces 8-MegabitParallel Nonvolatile F-RAMMemory(2009),
http :/ /wwwl0.edacafe.com/nbc /articles /
view_article .php?section=ICNews&articleid=714760

6. Gropp, W.: Using MPI: Portable Parallel Programming with the Message-passing Inter
face. MIT Press, Cambridge(2000)

7. Schubert,L., Kipp, A., Wesner,S.: Abovethe Clouds: FromGrids to ResourceFabrics. In:
Tselentis, G., Domingue,1., Galis, A., Gavras,A., Hausheer,D., Krco, S., et al. (eds.) To
wards the Future Internet - A European Research Perspective, pp. 238-249. lOS Press,
Amsterdam (2009)

8. Tanenbaum, A.S.: Modem Operating Systems. Prentice Hall PTR, Upper Saddle River
(2001)

9. Schubert,L., Kipp, A.: Principlesof Service Oriented Operating Systems. In: Vicat-Blanc
Primet, P., Kudoh, T., Mambretti, J. (eds.) Networks for Grid Applications, Second Inter
nationalConference,GridNets 2008. LectureNotes of the Institute for ComputerSciences,
Social Informaticsand Telecommunications Engineering, vol. 2, pp. 56-69. Springer, Hei
delberg (2009)

10. Gropp, W.: Using MPI: Portable Parallel Programming with the Message-passing Inter
face. MIT Press, Cambridge (2000)

II. Anderson. D.: Public Computing: Reconnecting People to Science. In: Conference on
Shared Knowledge and the Web. Residenciade Estudiantes, Madrid, Spain (2003)

12. Menzel, K.: Parallel Rendering Techniques for Multiprocessor Systems. In: Computer
Graphics,International Conference, pp. 91-103. ComeniusUniversityPress (1994)

13. Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Parallel
Software. Addison-Wesley, Reading (1995)

14. Tanenbaum, A.: Modem OperatingSystems. Prentice-Hall, Englewood Cliffs (1992)
15. Deitel, H.: An Introduction to OperatingSystems. Addison-Wesley, Reading (1990)
16. Lameter, c.: Extreme High PerformanceComputing or Why Microkernels Suck. In: Pro

ceedingsof the Linux Symposium(2007)

Proactive Software Rejuvenation Based on
Machine Learning Techniques

Dimitar Simeonov! and D.R. Avresky/

1 IRIANC
simeonov .dimitar~gmail .com

2 IRIANC
autonomic~irianc .com

Abstract. This work presents a framework for detecting anomalies in
servers leading to crash such as memory leaks in aging systems and
proactively rejuvenating them.

Proactive VM-rejuvenation framework has been extended with ma
chine learning techniques. Utilization of the framework is allowing the
effec t of software failures virtually to be reduced to zero downtime. It
can be applied against internal anomalies like memory leaks in the web
servers and external as Denial of Service Attacks. The framework has
been implemented with virtual machines and a machine learning algo
rithm has been realized for successfully determining a decision rule for
proact ively initiating the system rejuvenation. The proposed framework
has been theoretically justified and experimentally validated.

Keywords: proactive rejuvenat ion, virtualisation, machine learning
techniques, feature selection, sparsity, software aging (memory leaks),
validation.

1 Introduction

All computer systems may fail after some amount of t ime and usage. Thi s is
especia lly t rue for web serve rs. The availability is one of th e most important
characteristic of t he web servers. Computer systems, which are prone to failures
and cras hes, can be realized with a higher availability if t heir mission crit i
cal parts are replicated . There are ma ny practical examples of such systems
RAID , e-ma il servers , comput ing farms. In this pap er , it is shown how th e soft
ware replication and rejuvenation can be used for increasing th e availability of
a software applicat ion with a crit ical workload. Software replication and rejuve
nation can be performed by virtual machines easily, cheaply and effect ively. The
vir tu alization allows us to create a layer of an abst raction between software and
hardware, which provides some independence of the underlying hardware.

Any anomalies, with a similar behavior that are leadin g to a system's crash,
can be effect ively predicted by a machine learning algorit hm. For example, mem
ory leaks exhibit a similar behavior every t ime t hey occur, and therefore , such
behavior can be predicted wit h a high accuracy. With an accurate predict ion
and an efficient recovery mechanism, t he softwa re system's availability can be
increased significantly.

D .R . Avresky et al. (Ed s.): Cloudcomp 2009 , LNICST 34 , pp . 186- 200, 2010 .
© In st it ute for Computer Sciences, Soci a l-Informatics and Telecommunica ti on s Engin eering 2010

Proactive Software Rejuvenation 187

2 Related Work

Different methods and models have been presented for estimating software aging
in web servers and resource exhaustion in operational software systems in [17],
[18] and [19]. Software rejuvenation has been introduced as an efficient technique
for dealing with this problem in [14] and further developed in [23]. Virtualization
has been effectively used in [1] for improving software rejuvenation. Virtual ma
chines are widely used for increasing the availability of web servers [16] . In [5],
[11] and [24] different techniques for increasing availability of complex comput
ing systems have been introduced. Recently, a comprehensive model for software
rejuvenation has been developed for proactive detection and management of soft
ware aging ([15], [17], [20], [21] and [22]) . Different techniques for analyzing the
application performance due to anomalies for enterprise services are presented
in [6], [10], [12] and [13].

In this paper a comprehensive method for a proactive software rejuvenation
for avoiding system crashes due to anomalies, such as memory leaks, is pre
sented. It is theoretically justified and experimentally validated. Based on the
training data, obtained by the proposed framework, a close predictor of the ac
tual remaining time to crash of a system has been accurately estimated. Such
prediction has been used as a decision rule for initiating software rejuvenation.

3 Proactive VM-Rejuvenation Framework

The VM-REJUV framework has been developed in [1] in attempt to solve the
problem of aging and crashing web servers. Current paper proposes an extension
to the VM-REJUV framework that allows to predict the right time for activating
the rejuvenation mechanism.

The VM-REJUV framework consists of three virtual machines called for sim
plicity VMl (VM-master), VM2(VM-slave) and VM3(VM-slave). VM1 contains
the controlling mechanism of the application. VM2 and VM3 are identical and
contain the application susceptible to anomalies. VM1 is like a mini-server to
which VM2 and VM3 are connected . They regularly send information about
their parameters to VMl. This information is analyzed and only one of VM2
and VM3 is allowed to be active. VMl activates the spare copy to become active
and to start handling the workload when the active machine will be crashing
soon or stop reporting data.
The VM-REJUV framework can be extended into Proactive VM-rejuvenation
framework to contain an arbitrary number of virtual machines with the func
tionality of VM2 and VM3. Figure 1 shows the organization of Proactive VM
rejuvenation framework.

3.1 VM-Master and VM-Slave Components and Communication

VM-master needs to be always on. It creates a local server to which VM-slavesare
connected . Each VM-slave can be in one of the possible states: starting up, ready,
active and rejuvenating. All virtual machines have the following properties:

188 D. Simeonov and D.R. Avresky

VM middleware (VMware)

VM- slave

Probe

VM- master

Managing unit

VM- slave

Probe

Communication unit Communication unit Communicationunit

Application Decision rule Application

Fig. 1. Proactive VM-rejuvenation framework

- There is at least one active VM-slave (if possible.)
- All VM-slaves are functioning according to same rules.
- If the VM-master decides that the active VM-slave will crash soon it sends

a control message to a ready VM-slave to become active. When the new
VM-slave becomes active the old one is forced to rejuvenate.

3.2 VM-Master Components

Decision rule
The decision rule is a function from the history of parameters of a VM-slave to
a binary value YES/NO. It is obtained off-line by the developed machine learning
technique and is hard-coded in the VM-master. If the value is YES then the
corresponding VM-slave needs to be rejuvenated.

Managing unit
The managing unit holds information about which VM-slaves are currently con
nected and what is their most recent status. When the Decision Rule decides
that a VM-slave needs rejuvenation and informs the Managing unit , it starts
rejuvenation at a suitable moment.

Communication unit
The communication unit is responsible for receiving VM-slave parameters and
responding with simple commands for activating the application in a VM-slave.
The communication can be performed using either TCP-IP or VMCI protocols
(provided by VMware.)

3.3 VM-Slave Components

Probe
The probe collects system parameters of the VM-slave such as but not limited
to a memory distribution and a CPU load.

Proactive Software Rejuvenation 189

Communication unit
The communication unit receives orders about the execution of the application
from the VM-master and follows them . This way it serves as a managing unit as
well. Another duty of the communication unit is to report the system parameters
that has been collected by the probe.

Application
The application can be virtually any legacy code. It can be an Apache web
server, a protein folding simulation or any other program.

4 Machine Learning Framework

The VM-REJUV framework presented in [1] relies simply on selecting a level
of the current CPU utilization of a VM-slave to decide whether it needs to be
rejuvenated. This has been shown to be effective for detecting memory leaks but
has some limitations and drawbacks ([10]).

First, it discards a lot of the parameters of the VM-slave system, which may
be used for further refining the decision rule. Therefore , there is no warranty
that any empirically chosen level will be good for all scenarios. Some attacks
and exploits may be keeping the CPU utilization high enough to prevent the
rejuvenation of the VM-machine.

Second, it doesn't keep any track of previous times . Some attacks are recog
nizable only if one considers several consecutive moments in time combined.

The proposed solution in this paper is eliminating these drawbacks. The ma
chine learning technique for deriving an adequate decision rule that has been
developed in this paper is extending the capabilities of the Proactive VM
rejuvenation framework to predict anomalies leading to the system crash . It
is presented in Figure 2 and consists of five steps.

1. Training Data Collection
To be able to detect anomalies (memory leaks) in advance, the system needs
to have information about the symptoms of such anomalies . Such data can be
obtained by exposing the system to the anomalies several times and recording
the system parameters through the time.

2. Data Labeling
The system parameters record needs to be tagged with the remaining time
to the crash . This means for an every moment in time, in which the system
parameters are recorded, an additional parameter is added i. e., the time
remaining to crash. Note that this value cannot be known in advance. The
goal of this framework is to be able to extract a good prediction for the time
to crash from the rest of the parameters. Such prediction can be used in the
decision rule.

3. Data Aggregation
The system parameters for a certain period of time are collected and com
bined in what is called an aggregated datapoint. To such datapoint are added
additional parameters, which describe the dynamics of the parameters dur
ing the time period. For example, the average slope of each parameter is

190 D. Simeonov and D.R. Avresky

Collect data

Runs ofVM-slaves
with parameters

recorded

Label data

Calculate remaining
time tocrash

Aggregate data

Combine several
datapoints into one

describing the
dynamics of the

process

Reduce dimension

Lasso regularization
Forfeature selection

Apply decision rule

The so-selected
Features get
Integrated to
VM-master

Fig. 2. ML framework

an aggregated datapoint. This aggregation increases the number of param
eters to consider many-fold, and each parameter constitutes an additional
dimension in the representation of the problem. Considering all of them is
not the most efficient approach as some of them may be irrelevant to a cer
tain anomaly. Also to provide convergence guarantees for a decision rule in
a certain dimension, the higher dimension, the higher number of training
points is required . By reducing the dimension of aggregated datapoints the
convergence becomes possible and tractable.

4. Feature selection
A sparse regression, also known as Lasso regularization([9]) , is performed to
reduce the number of important parameters to a certain number, which can
be controlled. Lasso regularization is explained further in the paper.

5. Decision rule application
The solution of a Lasso regularization is a parse set of weights of the pa
rameters in the aggregated datapoint. Application of the decision rule can
be implemented by calculating aggregated datapoint on the fly and taking
the dot product of it and the weights obtained by Lasso regularization.
More sophisticated machine learning methods with higher degree kernels can
be applied to the reduced dimensionality datapoints. These could be Sup
port Vector Machines (SVM) and Regularized Least Squares (RLS) ([7]).
This step might not be necessary in some cases but in other it might fur
ther boost the efficiency of the decision rule. Because Lasso regularization
only tries to find a linear regression, this step might be necessary for some
problems and anomalies that might have a non-linear behavior.

Proactive Software Rejuvenation 191

5 Lasso Regularization

A machine learnin g tas k is equivalent to learning a function or a close approx
imation to it , given the values of the function at some points ([3],[4]). These
values will be called training data. There could be many functions, which sat isfy
the training dat a or have a small difference. A measure of how well a function
matches the t raining data is the Empirical Risk([2]). Therefore, a function that
minimizes the Empirical Risk might look like a good candidate function. How
ever, such functions have the drawback that they overfit the training data i.
e., these functions adjust themselves to the training dat a for the cost of mak
ing themselves more complicated, which leads to them having uncont rollable
and hard to predict behavior if evaluate d at other points. Therefore, a machine
learning tries to regularize such functions by assigning some penalty to their
complexity i. e., the more complicated the function, the higher is the penalty.

The most common and widely known regularizat ion technique is Tikhonov
regularizat ion([8]). It selects the function to be learned by the following rule:

(1)

In this formula H is the space of all functions that are considered (usually
some Hilbert space with a defined norm, usually L2 norm) , m is the size of the
training data, (X k , Yk) is the format of the training dat a - X k is a vector of
parameters and Yk is a scalar or a vector of values that somehow depend on the
parameters (in th is paper Yk is the remaining time to crash), V is a loss function
th at penalizes empirical errors. A is a parameter, which controls how much to
regularize and how important is minimizing the empirical risk. Usually, the best
value for A is selected t hrough a cross-validat ion.

Lasso Regularization differs slightly from Tikhonov regularization and the
difference is that the norm on the function is not given by the Hilbert Space
the function is in, but is the L1 norm. The function select ion rule takes the
form:

f(x) =< (3, x> (2)

where x can be any vector variable of parameters. The vector (3 is derived by:

The functions that Lasso regularization considers are restricted to linear func
tions but it has the property that the selected weight vector (3 is sparse, i.e. the
majority of its coordinates are zeros. An intuition about this can be observed in
Figure 3:

192 D. Simeonov and D.R. Avresky

~2
sparse solution (L1)

non-sparse solution (L2)

~ 1

Fig. 3. Sparsity of Lasso regularization

At Figure 3 /31 and /32 represent the different coordinates of /3. The sloped
violet line represents space of solutions with equal empirical risk. Then, among
them, one needs to chose the solut ion that minimizes th e regularization penalty.
For Tikhonov regularization (red) the regulari zation penalty is the L2 distance
between a solution and the origin of the coordinate system. Therefore, the best
solution is at a tangent point between a circle centered at the origin and the
sloped line. For Lasso regularization the penalty is the L1 distance between a
solut ion and the origin. Therefore, the best solution is at a tangent point of Ll
ball (green rhomboid) and the line, which will happ en to be at a some subset of
the axes i. e., therefore, it will be sparse . Similar arguments in higher dimensions
justify the sparsity of Lasso regularization in general.

6 Experimental Setup

Two laptops Dell M1530 with 4GB RAM and 2GHz Core Duo processor have
been used for performing th e experiments and th e Proactive VM-Rejuvenation
Framework has been inst alled on each of them. The operating system was Linux
(Ubunt u 8.04). The virtual machines were created and maintained with VMWare
Workstation 6.5, but this is not necessary - they could be managed with any

Proactive Software Rejuvenation 193

other virtualization software. There was one VM-master and two VM-slaves.
They were communicating to each other via VMCI protocol, but of course other
forms of communication such as TCP-IP are possible. All the software in VM
master and VM-slaves was self-written or built-in in Ubuntu.

In order to demonstrate the scalability of the proposed Proactive VM
rejuvenation framework, as shown in Fig 1, it has been has implemented with
a possibility to introduce multiple VM machines, independent of the available
hardware. This approach also demonstrates the minimal hardware requirements.
Still, the Proactive VM-rejuvenation framework can scale horizontally, to many
physical machines. VM-masters and VM-slaves could be replicated multiple
times, if the VM-masters can synchronize their actions , for example with a com
mon database.

The Managing unit in the VM-master , the Communication units in the VM
master and VM-slaves, the Probe and a sample Application were self-written
and are in the range of few thousands lines of C code. For the decision rule were
used some freely available libraries of implementations of Lasso regularization.

The Probe collects parameters about a Vvl-slave, combines them in a strictly
defined form and sends the data to the VM-master on a regular interval. In the
experiment performed this interval was set to one second. The form of the data
is the following:

Datapoint:
Memory : 515580 497916 17664 0 17056 268692
Swap: 409616 0 409616
CPU: 52.380001 0.070000 3 .090000 0.260000 0.000000 44.200001

Such datapoint contains information about the memory distribution and CPU
activity.

The Application in the VM-slaves had the capability to produce memory
leaks. Its only task was to accumulate them .

The Communication units were responsible for transmitting data between the
Probe and the Communication unit in the VM-slave and for transmitting the
commands from the Communication unit of the VM-master to the Communica
tion unit of the VM-slave.

Besides communication with the VM-master, the Communication unit of the
VM-slave is responsible for only executing simple commands like START and STOP
the application.

The data collection per each laptop has been conducted for 63 runs, each of
them consisted of approximately 15-30 minutes of parameter history recorded
every second. That data was aggregated and labeled with a simple self-written
Python script . The Lasso regularization was performed using freely available
implementations of Lasso regularization.

Rejuvenation
For rejuvenation was used a restart of the virtual machine. Another approach
would be to simply restart the process of the application. However, this would
not completely restore the original state of the system when the application was

194 D. Simeonov and D.R. Avresky

started. For example if the application has used the swap space this would not
be cleared after a process restart but would be after a virtual machine restart.
The only way that it can be guaranteed that the system parameters will be the
same at the start of the application is through a virtual machine restart.

7 Results

Figure 4 shows some of the values of the parameters combined in the aggregation
step , change with a respect to the time before crash for one particular run. These
parameters describe the memory distribution, the swap memory distribution (on
the left) and the CPU load distribution (on the right) . These are presented for
one of 30 instances used for the aggregation, correspondingly at time 15 seconds.
The values of the parameters are in parameter units. For example, for memory
parameters the units are KB and for CPU parameters the units are %(percent) .

- memfree
15

- mem buf·
fers 15
mem
cached 15

- swap used
15

Features of VM-slave (CPU)Features of a VM-slave(memory)
200000
180000

160000
'" 140000 _

~ 120000
> 100000
S
'" 80000
~ 60000

~ 40000

20000

0==='-
150 390 630 870 1110

30 270 510 750 990

Timeto crash (seconds)

80

70 ~

60~

'"" 50"iii
:: 40
~

~30~

~ 20 -.........

e, 10

0- - - - - - - -
120 300 480 660 840 1020

30 210 390 570 750 9301 110

Timeto crash(seconds)

- cpu user 15
- cpu nice 15

cpu system
15

- cpu idle 15

Fig. 4. Variation of all parameters over time

Figure 5 shows some additional parameters(the average slopes) that were
calculated for aggregation . .For Figure 5 the values of the parameters are shown
in parameter units per time. For example, for memory parameters the units are
KB/s and for CPU parameters the units are %/s (percent per second).

However, some problems with the probes have been observed in the cases
when a certain level of memory leaks have been reached. Unfortunately, this
holds for all runs and consists of repeating the old system parameters without
a change. It can be observed at figures 4 and 5 as flattening of all parameter
plots approximately 600 seconds before the actual crash. However, this outrage
of the Probe module does not change the effectiveness of the machine learning
method. This is explained later in the paper at Figure 8.

Another specific of Lasso regularization is that the algorithm is not guaranteed
to converge to the global minimum for (3, but may end up with a local minimum
solution . This is due to the fact that Lasso regularization is a convex relaxation

Proactive Software Rejuvenation 195

Extrafeatures - slopes Extrafeatures - slopes
1200 0.03

1000 0.02

ISiJ800

600 - memused
'"

0.01

'"" slope " - cpu user
~ 400 iii 0 slope-membuffers >
Qj 200 slope ~ -o.oi -cpu system
Qj memcached '" slope
E 0 slope E

·0.02 cpu idle
~ os
os ·200 -swap used :;; slope
a. slope a. ·0.03·400

·600 -0.04

so 270 450 630 810 990 1170 150 390 630 870 1110
0 180 360 540 720 900 1080 30 270 510 750 9OO

Time to crash (seconds) Time to crash(seconds)

Fig. 5. Variation of extra calculated parameters (slopes) over time

1"
•
J

Fig. 6. Variation of the numberof non-zero parameters with respect to A

of a NP-hard problem. Yet, the solut ion that the algorithm provides is good
enough in the sense that it exhibits important properties such as a sparsity and a
good regression solution. This is illust rated in Figure 6, by showing the number
of the parameters in the sparse solut ion with respect to lambda. The general
trend is to decrease the number of parameters, even though this doesn't happen
strictly monotonous ly. After aggregating the datapoints Lasso regularization was
performed on them, and the weights selected for the parameters for few values
of A are presented in Figure 7. Many of the parameter weights are zeros, which
is expected since t he method provides a sparse solution . The spars ity of the
solution can be adjusted by the value of A.

For example, in the case A = 10, only 5 out of 39 parameters were given high
non-zero weights. All other parameters had weights smaller than 0.01. These
five parameters are shown in Table 1:

196 D. Simeonov and D.R. Avresky

Table 1. Most important parameters after feature selection for A = 10

WeightI
mem_used_slope -0.70
swap_used_slope 0.89
cpu_user_15sec 12.01
cpu_idle_15sec 17.52
cpu_user_30sec 9.12

IParameter name

Weightsof parameier!; sftotl assoregularizalion

"

20

"

t "

o • • •

-,
l'I'lIfft_our l...~. 1oj)I CII'ol_" .*'\.. 1ope "*'l11'llt1Cl _'~ CPW_nc4. ' 5Iec 1IW!l) 3OHc CPII."'iII' _3OMc:

"*'\..1IWd_,lope , • • g..',...,. CIl'ol.Id" . "OO4'P."'IICI.'!kec CpY_'~"USIK "*'LcecMd.3OIec CPU.OIrd.3OlK

Fig. 1. Selected weights for the parameters after Lasso regularization for severalvalues
of A

Decision Rule
When the weights of the parameters were multiplied to the values of the pa
rameters at each datapoint and summed the result is a close predictor of the
actual remaining time to crash . For that datapoint, the calculated remaining
time to the crash is incorporated in a decision rule. Figure 8 is an example of
the correspondence between a predicted and actual remaining time on one of
the runs. The training was done over all runs , and the figure presents only one
of the runs . The ground truth is the dashed line called "Actual time" , and the
predicted remaining time for various values of A is described by the other lines
in Figure 8. The predicted times were calculated by using parameter weights, in
the format shown in Figure 7, multiplied to the parameter values in the format
shown in Figures 4 and 5 to obtain time to crash value and then summed up.
This is equivalent to taking the dot product between the weights vector wand
the parameters vector p.

w.p = tpredicted (4)

Proactive Software Rejuvenation 197

Predicted Times for Various Values of Lambda
compared to ground truth

- ActualTime
- Lambda =0.1

Lambda =10

- Lambda =10"4
•...•Lambda =10"9

............

(j)
-g -
o
u
OJ
~1500
OJ
E
F ,ooo
"0
OJ
U
'C ""' - - - - - - - - ,----Jf
~
a,

~~~2~m~M~mm~~~lwamg~~~11wllro

O~1~~2~~*~*~~_m*~~~~~1~

Time to crash (seconds)

Fig. 8. Comparison between actual remaining time and prediction based on the ma
chine learning algorithm for various values of lambda

The results are presented in Figure 8, which shows that the predicted t ime for all
values of >. is a good approximat ion of the ground trut h. The abscissa shows the
remaining t ime to crash, and the ordinate shows the predicted time in seconds.

Usually, the best value of >. is selected through cross-validation. However, in
this case, anot her property of a good solution is its sparsity. Hence, the value
of lambda can be varied to achieve a small number of parameters, which would
lead to efficiency from implementation point of view. As can be observed in
Figure 8 the quality of the solution doesn't vary greatl y as >. varies. The predicted
remaining times are for values of >. with multiplicat ive difference in the order of
1013 .

Such predictor was used as a decision rule. If the predicted remaining time is
under some safe limit (1000 seconds - more than the minimal predicted t ime),
as in Figure 8, the decision rule is activated and it informs the managing unit
of the VM-master that the corresponding VM-slave needs to be rejuvenated.
The decision rule was hard coded, since all the learning was done off-line, as it
requires the data labeling step of the ML framework, which can be performed
only after the dat a is once collected.

The framework with one V:'1-master and two VM-slaves, with properly set
a decision rule and a bug-free implementation was able to continue changing
the load from one VM-slave to anot her without a server crash. The Proactive
VM-rejuvenation framework with a properly devised decision rule flawlessly was
able to run for a couple of weeks and switch the act ivity of VM-slaves every
15-30 minutes. Additional difficulties to that aim were the varying rejuvenation
t imes. Many times all that was needed for the rejuvenat ion was simply a restart
of the virtual machine. However , in some cases was necessary the OS to perform



198 D. Simeonov and D.R. Avresky

a hard-disk check and this required an additional time to be taken into account
during the rejuvenation process.

8 Conclusion

Proactive VM-rejuvenation framework for selecting critical parameters for de
tecting anomalies in web servers has been presented in the paper. The ability to
add arbitrary number of backup virtual machines and reliably to predict the re
maining time to crash with the use of machine learning techniques is described.
An algorithm for a feature selection, based on machine learning for reducing
the complexity and dimensionality of the problem, has been developed. The
framework has been implemented with virtual machines and a machine learn
ing algorithm has been realized for successfully determining a decision rule for
proactively initiating the system rejuvenation. The proposed framework has been
theoretically justified and experimentally validated . These are real problems for
the Internet today and the future cyber infrastructure. The proposed machine
learning method is general and can be applied for a wide range of anomalies .

9 Future Work

One opportunity for extension is to apply other machine learning techniques
on the top of Lasso Regularization. Such techniques could be Regularized Least
Squares (RLS) or Support Vector Machines (SVM). They could be used with a
non-linear kernel and learn more complicated behavior. This would reduce the
number of false positives and false negatives of the decision rule significantly.

Another opportunity for example is to learn to defend against more than one
type of anomaly. If decision rules against memory leaks and denial of service
attack can be learned, both of them can be used simultaneously. In this case,
whenever any anomaly occurs, the rejuvenation of the VM-slavewill be initiated.

Each virtual machine can implement a simplified version of the proposed
framework that includes the embedded decision rule and the probe for monitor
ing the parameters in a real time. These virtual machines can be provided to
the clients on demand across the network.

References

1. Silva, L., Alonso, J ., Silva, P., Torres, J. , Andrzejak, A.: Using Virtualization to
Improve Software Rejuvenation. In: IEEE Network Computing and Applications,
Cambridge , USA (July 2007)

2. Bousquet, 0 ., Boucheron, S., Lugosi, G.: Introduction to Statistical Learning The
ory. In: Bousquet, 0. , von Luxburg, U., Ratsch, G. (eds.) Machine Learning 2003.
LNCS (LNAI), vol. 3176, pp . 169-207 . Springer, Heidelberg (2004)

3. Poggio, T., Smale, S.: The Mathematics of Learning: Dealing with Data. Notices
of the AMS (2003)

4. Bishop, C.: Pattern Recognition and Machine Learning. Springer , Heidelberg
(2007)



Proactive Software Rejuvenation 199

5. Chen, M., Accardi , A., Kiciman , K, Lloyd, J ., Patterson, D., Fox, A., Brewer,
K : Path-based failure and evolut ion management . In: Proc. of the 1st Symposium
NSDl 2004 (2004)

6. Cherkasova, L., Fu, Y., Tang, W., Vahd at , A.: Measuring and Characterizing End
to-End Internet Service Performance. Journal ACM/IEEE Tran sactions on Int er
net Technology, TOIT (November 2003)

7. Evgeniou, T ., Pontil , M., Poggio, T.: Regularization Networks and Support Vector
Machines. Advances in Computa tional Mat hemat ics (2000)

8. Cucker, F., Smale, S.: On the mathemat ical foundations of learning. Bulletin of
the American Mathematical Society (2002)

9. Tibshirani , R.: Regression selection and shrinkage via the lasso. J . R. Stat . Soc.
Ser. B 58, 267-288 (1996)

10. Cherkasova, L., Ozonat , K , Mi, N., Symons, J ., Smirni , E.: Towards Automated
Detection of Application Performance Anomaly and Change. HPlab s 79 (2008)

11. Cohen, 1., Zhang, S., Goldszmidt, M., Symons, J ., Kelly, T ., Fox, A.: Capturing,
Indexing, Clustering, and Retrieving System History. In: Proc. of the 20th ACM
Symposium SOSP 2005 (2005)

12. Mi, N., Cherkasova, L., Ozonat , K , Symons, J ., Smirni, E.: Analysis of Application
Performance and Its Change via Representative Applicat ion Signatures. In: NOMS
2008 (2008)

13. Zhang , Q., Cherkasova, L., Mathews, G., Greene, W., Smirni , K : R-Capriccio:
A Capacity Plannin g and Anomaly Detection Tool for Ent erprise Services with
LiveWorkloads. In: Cerqueira, R., Campbell, R.H. (eds.) Middleware 2007. LNCS,
vol. 4834, pp. 244-265. Springer, Heidelberg (2007)

14. Huang, Y., Kintala, C., Koletti s, N., Fulton, N.: Software Rejuvenation: Analysis,
Module and Applications. In : Proceedings of Fault-Tolerant Comput ing Sympo
sium, FT CS-25 (June 1995)

15. Castelli, V., Harp er , R., Heidelberg, P., Hunter , S., Trivedi, K , Vaidyanath an, K ,
Zeggert , W.: Proactive Management of Software Aging. IBM Journal Research &
Development 45(2) (March 2001)

16. Rosenblum , M., Garfinkel, T .: Virtual Machine Monitors: Current Technology and
Future Trends. IEEE Internet Computing 38(5) (May 2005)

17. Vaidyanathan , K ., Trivedi, K : A Comprehensive Model for Software Rejuvenation.
IEEE Trans. on Dependable and Secure Computing 2(2) (April 2005)

18. Vaidyana than , K., Trivedi, KS.: A Measurement- Based Model for Estimation of
Resource Exhaustion in Operat ional Software Systems. In : Proc. 10th IEEE Int.
Symp. Software Reliability Eng., pp. 84- 93 (1999)

19. Li, L. , Vaidyanathan , K , Trivedi, K : An Approach for Estimation of Software
Aging in a Web-Server . In: Proc. of the 2002Int ernational Symposium on Empirical
Software Engineering, ISESE 2002 (2002)

20. Gross, K , Bhardwaj , V., Bickford, R.: Proactive Detection of Software Ag
ing Mechanisms in Performance Critical Computers. In : Proc. 27th Annual
IEEE/NASA Software Engineering Symposium (2002)

21. Kaidyan athan, K., Gross, K .: Proactive Detection of Software Anomalies through
MSET . In: Workshop on Predictive Software Models (PSM 2004) (September 2004)

22. Gross, K ., Lu, W.: Early Detection of Signal and Process Anomalies in Ent erprise
Computing Systems. In: Pro c. 2002 IEEE Int. Conf. on Machine Learn ing and
Applications, ICMLA (June 2002)



200 D. Simeonov and D.R. Avresky

23. Silva, L., Madeira, H., Silva, J .G.: Software Aging and Rejuvenation in a SOAP
based Server. In: IEEE-NCA : Network Computing and Applications, Cambridge
USA (July 2006)

24. Candea, G., Brown, A., Fox, A., Patterson, D.: Recovery Oriented Computing:
Building Multi-Tier Dependability. IEEE Computer 37(11) (November 2004)

25. Oppenheimer, D., Brown, A., Beck, J. , Hettena, D., Kuroda, J. , Treuhaft, N., Pat
terson, D.A., Yellick, K.: ROC-I : Harware Support for Recovery-Oriented Comput
ing. IEEE Transactions on Computers 51(2) (2002); Special issue on Fault Tolerant
- Embedded Systems, Avresky, D., Johnson , B.W., Lombardi , F. (Guest eds.)



Dynamic Load Management of Virtual Machines
in Cloud Architectures

Mauro Andreolini, Sara Casolari, Michele Colajanni, and Michele Messori

Depar tment of Information Engineering
University of Modena and Reggio Emilia , It aly

{mauro. andr eol i ni, sara . casol ari,mi chel e .col aj anni,
michele . messori}~unimore . it

Abstract. Cloud infrastructures must accommodat e changing demands
for different types of processing with heterogeneous workloads and time
const raints. In a similar context, dynamic management of virtualized
applicat ion environments is becoming very important to exploit com
puting resources, especially with recent virtualization capabilities that
allow live sessions to be moved transparently between servers. This pa
per proposes novel management algorithms to decide about reallocat ions
of virt ual machines in a cloud context charac terized by large numb ers of
hosts. The novel algorithms identify just th e real crit ical instances and
take decisions without recurring to typical th resholds. Moreover, th ey
consider load trend behavior of the resources instead of instant aneous or
average measures. Experiment al results show that prop osed algorithms
are t ruly selective and robust even in variable contexts, t hus reducing
system instability and limit migrat ions when really necessary.

1 Introduction

Exist ing dat a centers are characterized by high operat ing costs , inefficiencies,
and by myriads of distributed and heterogeneous servers that add complexity in
terms of security and management . In order to improve dat a center efficiency,
most enterprises are going to consolidate exist ing systems through virt ualizat ion
solutions up to cloud centers. Logically pooling all system resources and centr al
izing resource management allow to increase overall utilization and lowering
management costs . There are various approaches to virtualization (hardware
virtualizat ion up to micro-partitioning, operating system virt ualization, soft
ware virtualizat ion), but consolidation and virt ualization by themselves do littl e
to improve application performance. The quest ion is whether huge increases in
terms of system utilization correspond to an actual bett er efficiency or they are
due to applications running poorly in those virt ual environments .

Consolidat ion and virtualization deliver more computing resources to the or
ganizat ions, but failure to tune applications to run on virt ualized resources means
that un-tun ed applications are wasting processing cycles. In order to avoid to
waste computing and storage resources it is necessary to optimize management

D.R . Av resky et al. (Eds .) : Cloudcomp 2009, LN ICST 34, pp. 201-214,2010 .
© Insti tute for Computer Scien ces, Soc ia l-Informa tic s and Telecommunica ti on s Eng ineering 2010



202 M. Andreolini et al.

of these novel cloud systems architectures and virtualized servers. Overall per
formance analysis and runtime management in these contexts are becoming ex
tremely complex, because they are a function not only of guest applications, but
also of their interactions with other guest machines as they contend for processing
and I/O resources of their host machine. We should consider that these modern
cloud infrastructures must accommodate varying demands for different types of
processing within certain time constraints, hence dynamic management of virtu
alized application environments is becoming very important. Indeed, automated
workload management and balancing facilities can also lead to performance im
provements while greatly reducing management cost. For these reasons, all recent
virtualization management capabilities allow loads and live sessions to be moved
transparently between processors or even servers, thus allowing applications to
exploit unused computing resources regardless of whether those resources are
located on local or remote servers. Dynamic capacity management can increase
productivity but it requires continuous monitoring services and innovative run
time decision algorithms that represent the focus of this paper. In particular,
we propose quite innovative algorithms for deciding when a physical host should
migrate part of its load, which part of the load must be moved, and where should
be moved. The difficulty of answering to these questions is also due to the ob
servation that the performance measures referring to cloud system resources are
characterized by spikes and extreme variability to the event that it is impossible
to identify stable states if not for short periods.

The paper is organized as follow. Section 2 evidences main contributions to
the state of the art. Section 3 describes the operating context and outlines the
main phases of the proposed management algorithms. Section 4 considers the
problem of identifying when a host really requires a load migration because of its
critical state conditions, and proposes an innovative selection algorithm. Section
5 is devoted to the identification of the virtual machines that is convenient to
migrate and of the physical hosts that can receive them. Section 6 concludes the
paper with some final remarks and future work.

2 Related Work

There are several proposals for live migration of virtual machines in clusters of
servers, and the most recent techniques aim to reduce downtime during migra
tion. For example, the solution in Clark et al. [6] is able to transfer an entire
machine with a downtime of few hundreds of milliseconds. Travostino et al. [7]
migrate virtual machines on a WAN area with just 1-2 seconds of application
downtime through lightpath [8]. Unlike these solutions that are based on a pre
copy of the state, Hines et al. [9] propose a post-copy which defers the transfer of
a machine memory contents after its processor state has been sent to the target
host. Migration techniques through Remote Direct Memory Access (RDMA)
further reduce migration time and application downtime [10]. Although these
mechanisms are rapidly improving, live migration remains an expensive opera
tion that should be applied selectively especially in a cloud context characterized



Dynamic Load Management of Virtual Machines in Cloud Architectures 203

by thousands of physical machines and about one order more of virtual machines.
The focus of this paper on decision and management algorithms differentiates
our work from literature on migration mechanisms. We evidence three main
phases of the migration management process: to decide when a dynamic redis
tribution of load is necessary; how to choose which virtual machines is convenient
to migrate; to place virtual machines to other physical machines.

Khanna et al. [4] monitor the resources (CPU and memory) of physical and
virtual machines. If a resource exceeds a predefined threshold and some SLA is at
risk, then the system migrates a virtual machine to another physical host . Sand
piper [11] is a mechanism that automates the task of monitoring and detecting
hotspots; Bobroff et al. [12] propose an algorithm for virtual machine migra
tion that aims to guarantee probabilistic SLAs. All these works decide when a
dynamic redistribution of load is necessary through some threshold-based algo
rithms. We propose a completely different approach that decides about migra
tion by avoiding thresholds on the server load, but considering the load profile
evaluated through a CUSUM-based stochastic model [1].

The issues about to choose which virtual machines is convenient to migrate
and where to place virtual machines have been often addressed through some
global optimization approach . Entropy [13] decides about a dynamic placement
of virtual machines on physical machines with the goal of minimizing the number
of active physical servers and the number of migrations to reach a new configu
ration. Nguyen Van et al. [14] use the same approach but they integrate SLAs.
Sandpiper [11] proposes two algorithms: a black-box approach that is agnostic
about operating system and application; a gray-box approach that exploits op
erating system and application level statistics. It monitors CPU, memory and
network resources to avoid SLA violations. The gray-box can also analyze appli
cation logs. The scheme proposed by Khanna et al. [4] moves the virtual machines
with minimum utilization to the physical host with minimum available resources
that are sufficient to host that virtual machines without violating the SLA. If
there is no available host, it activates a new physical machine. Similarly, if the
utilization of a physical machine falls below a threshold, the hosted servers are
migrated elsewhere and the physical machine is removed from the pool of avail
able hosts . Stage et al. [5] consider bandwidth consumed during migration. They
propose a system that classifies the various loads and consolidate more virtual
machines on each host based on typical periodic trends, if they exist. The paper
in [12] adopts prediction techniques and a bin packing heuristic to allocate and
place virtual machines while minimizing the number of activated physical ma
chines. The authors propose also an interesting method for characterizing the
gain that a virtual machine can achieve from dynamic migration. Our proposals
differ from all these global optimization models that are applicable at runtime
when there is a small set of machines to consider, but they cannot work in a
cloud context characterized by thousands of physical machines. For these rea
sons, we analyze separately each physical host and its related virtual machines
with the main goal of minimizing migrations just to the most severe instances.
Instead of distributing the load evenly across a set of physical machines in order



204 M. Andreolini et al.

to get an optimal resource utilization, we think that in a cloud context exposed
to unpredictable demand and heterogeneous workload, a load sharing approach
for migration of virtual machine is more realistic , in that it is possible to share
the load across multiple servers, even if in an unequal way.

3 Management Algorithms for Load Migration

A typical cloud architecture consists of a huge set of physical machines (host),
each of them equipped with some virtualization mechanisms, from hardware vir
tualization up to micro-partitioning, operating system virtualization, software
virtualization. These mechanisms allow each machine to host a concurrent ex
ecution of several virtual machines (guest) each with its own operating system
and applications.

To accommodate varying demands for different types of processing, the most
modern cloud infrastructures include dynamic management capabilities and vir
tual machine mobility that is, the ability to move transparently virtual machines
from one host to another. By migrating a guest from an overloaded host to an
other not critical host , it is possible to improve resource utilization and better
load sharing. Independently of the migration techniques , they share a common
management model: any decision algorithm for migration has to select one or
more sender hosts from which some virtual machines are moved to other desti
nation hosts , namely receivers. This paper addresses the main issues related to
migration decisions, that is, it aims to answer to the following questions: when
it is necessary to activate a migration, which guests of a sender host should
migrate, and where they should be moved.

We are aware that any dynamic guest migration remains an expensive opera
tion that consumes resources of the sender and receiver hosts as well as network
bandwidth because of transfers of large chunks of data representing the memory
state of the guests . In a cloud architecture with thousands of hosts, an abuse of
guest migrations would devastate system and application performance . Hence,
we should recur to migration in few severe instances during the cloud platform
operations. In other words, a good algorithm for governing of dynamic migra
tions in a cloud architecture must guarantee a reliable classification of the host
behavior (as sender, receiver and neutral) that can reduce the number of useless
guests migrations, and a selective precision in deciding which (few) guests should
migrate to another host .

The load state of a host is obtained through a periodic collection of measures
from server monitors . These measures are typically characterized by noises and
non stationary effects in the short-medium term, while there is some periodic
behavior in a long term vision (day, week) that we do not consider in this pa
per . Figure 1 shows four load profiles (concerning host CPU utilizations) in a
cloud architecture where physical machines host any type of virtual machines
and applications, such as Web sites, databases, access controls , CMSes, mail
servers, management software. In a similar context, the traditional threshold
based approach [4, 11] that classifies a host as a sender or receiver because its



Dynamic Load Management of Virtual Machines in Cloud Architectures 205

1....., ------------,

c:: 0.9'
.2

~ 0.8 '

S
:::l 0.7'
c,

o 0.6'

0.50 100 200
Samples

300

1....., - - - - - - - - - - --, 1....., ---------- --,

300100 200
Samples

c:: 0.9
.2

~ 0.8· j

5 I
:::l 0.7,
c,

u 0.6[

0,50L-----------~

c:: 0.9
.2

~ 0.8 '

S
:::l 0.7'
c.
o 0.6

,'<J
0.50L..:...-----:,....----'----,~--__::_'

Fig. 1. Load profiles of hosts in a cloud architecture

load is beyond or below some given lines cannot work. This problem is even
more serious in a cloud context with thousands of hosts where, at a checkpoint ,
a threshold may signal hundreds of senders and, at the successive checkpoint ,
the number of senders can become few dozen or, even worse, remain in the order
of hundreds but where most servers are different from those of the previous set.
The decision about which guests is useful to migrate from one server to another
is affected by similar problems if we adopt some th reshold-based method.

The primary goal of this paper is to provide robust and selective reallocations
of guests in a context of thousands of hosts, under the consideration that high
performance and low overheads are guaranteed only if we are able to limit the
number of migrations to few really necessary instances. To this purpose, we
propose novel algorithms for dynamic load management in a cloud architect ure
that take decisions without fixed thresholds and th at consider trend behavior
instead of instantaneous or average load measures.

The proposed management algorithm is act ivated periodically (typically in
the order of few minutes) and, at each checkpoint, it aims at defining three sets:
sender hosts , receiver hosts, and migrating guests , where their cardinalit ies are
denoted as S , R , and G, respectively. Let also N be the total number of hosts.
We have to guara ntee that N ~ S + R , and th at the intersection between the
set of sender hosts and of receiver hosts is null. The algorithm is based on the
following four phases.

- Phase 1: Selection of sender hosts. The first action requires the selection
of the set of sender hosts that require the migration of some of their guests .
We describe our strategy that is based on the CUSUM models [1] in Section 4.



206 M. Andreolini et aI.

The idea is to have a selective and robust algorithm so that the cardinality
S of the set of senders is much smaller than the total number of hosts that
is, S« N.

- Phase 2: Selection of guests. Once selected the senders, we have to evalu
ate how many and which guests it is convenient to migrate. To this purpose ,
in Section 5 we propose an algorithm that is able to select the most criti
cal guests for each server on the basis of a load trend-based model instead
of traditional approaches based on instantaneous or average load measures.
Even for this phase, the goal is to limit the number of guests for each host
that should migrate, so that G < (N - S). If this does not occur after the
first evaluation , the guest selection proceeds iteratively until the constraint
is satisfied. (It is worth to observe that no experiment required an iteration.)

- Phase 3: Selection of receiver hosts. Once selected the guests that have
to migrate, we have to define the set of receiver hosts. To this purpose, we
do not propose any specific innovative algorithm. From our past experience
in other geographically distributed architectures and initial experiments on
cloud architectures, we can conclude that the major risk we want to avoid is
a dynamic migration that tends to overload some receiver hosts so that at the
successive checkpoint a receiver may become a sender. Similar fluctuations
devastate system performance and stability. Hence, our idea is to set R = G
so that each receiver host receives at most one guest. The selected receivers
are the R hosts that exhibit the lowest load computed on the basis of the
trend model described in Section 5.

- Phase 4: Assignment of guests. The guests selected in the Phase 2 are
assigned to the receivers through a classical greedy algorithm where we begin
to assign the most onerous guests to the lowest loaded hosts. (It is worth to
observe that in actual cloud architectures there are other architectural and
application constraints that should be satisfied in the guest migration phase.
These constraints limit the combinations of possible assignments to different
sets thus reducing the computational cost of sorting .)

The most innovative contribution of this paper is on the first two phases that
represent the core of the following two sections. In the other two phases, we
adopt more traditional algorithms not deserving an accurate treatment in this
paper.

4 Selection of Sender Hosts

The identification of the set of sender hosts represents the most critical problem
for the dynamic management of a cloud architecture characterized by thousands
of machines. The fundamental idea to determine selective and robust detections
is to pass from more or less sophisticated threshold-based models, that consider
the amount of load of a host in a certain interval, to a model that analyzes the
load profile of the resources. The goal is to signal only the hosts subject to signif
icant state changes of their load, where we define a state change significant if it



Dynamic Load Management of Virtual Machines in Cloud Architectures 207

,.-,.- -
0 ..

00

005

~ 0'
~ 075

g 0 7

005

0'

(a) Profile 1

,,.
00'

00

005

§ 0',
~ O"
g 07

0 '"

0"

0 '0- - - - se-- '00 150 200
~..

(b) Profile 2

Fig . 2. CPU load in two hosts (each sample refers to an interval of 1 minute)

is intensive and persistent. To determine abrupt modifications of a host load pro
file, we propose a reliable and robust detection model especially useful when the
applicat ion context consists of large numbers of hosts subject to: many instan
taneous spikes, non-stationary effects, and unpredictable and rapidly changing
load .

As examples, Figure 2(a) and Figure 2(b) show two typical profiles of th e CP U
utilization of two hosts in a cloud architecture. The former profile is characterized
by a stable load with some spikes but there is no significant state change in terms
of th e previous definition . On the other hand , the latter profile is characterized
by some spikes and by two significant state changes around sample 180 and
sample 220. A robust detection model should arise no alarm in the former case,
and just two alarms in the latter inst ance. In a similar scenario, it is clear that
any detection algorithm that takes into consideration an absolute or average load
value as alarm mechanism tends to cause many false alarms. This is th e case of
threshold-based algorithms [4,11] that are widely adopted in several management
contexts . Just to give an example, let us set the load threshold to define a sender
host to 0.8 of its CPU utilization (done for example in [15]). In the Figures 2,
the small t riangles on the top of th e two figures denote the checkpoints where



208 M. Andreolini et al.

Table 1. Evaluation of ARL

h 1 2 3 4 5 6 7 8 9 10
ARLo 620 59 169 469 1286 3510 9556 25993 70674
ARL l 2 4 6 8 10 12 14 16 18 20

the threshold-based detection algorithm signals the host as a sender. There are
10 signals in the former case and 17 in the latter case instead of the expected 0
and 2. This init ial result denotes a clear problem with a crit ical consequence on
performance: we have an excessive number of guest migrations even when not
strictly necessary. If we extend this example to a cloud context characterized by
thousands of hosts, then we can understand why dynamic guest migrat ion is not
yet so popular.

Our detection model takes a quite different approach that evaluates the en
tir e load profile of a resource and aims to detect abrupt and permanent load
changes. To this purpose, we consider a stochastic model based on the CUSUM
(Cumulative Sum) algorithm [1] that works well even at runtime. Other anomaly
detection techniques based on pattern matching and data mining are preferable
for off-line approaches.

The CUSUM algorithm has been shown to be optimal in that it guarantees
minimum mean delay to detection in t he asymptot ic regime when the mean time
between false alarms goes to infinity [2]. We consider the one-sided version of
the CUSUM algorithm that is able of selecting increasing changes of the load
profile in face of variable and non-stationary charac teristics. The samples of the
loads deriving from the host monitors denote a time series {y;}, i = 1, .. . , n,
characterized by a target value Pi that is computed as the exponent ially weighted
average of prior dat a:

Pi = aYi +(1- a )Pi-l (1)

where 0 < a :::; 1 is typically set to 1/ (1 + 21l' * f) , and J is the cutoff frequency
of the EWMA model [3]. The CUSUYI algorithm detects abrupt increases from
the target value Pi by evaluating the following test stat istics:

do = 0; d, = max{O, di- 1 + Yi - (Pi + K)} (2)

which measures positive deviation s from a nominal value Pi. A counter di ac
cumulates all deviations of the measures Yi from the target value Pi th at are
great er than a pre-defined constant K ; the counter di is reset to 0 when they
become negative. The term K , which is known as the allowance or slack value,
determines the minimum deviation that the statist ics di should account for. The
suggested default value in literature is K = 4,where Ll is the minimum shift to
be detect ed [2]. A change in the load profile of a host is signaled when d, exceeds
H = ha y, where h is a design parameter and ay is the standard deviation of the
observed tim e series.

The choice of the parameter h influences the performance of the CUSUM
algorithm in terms of the so called Average Run Lengths (ARL), where ARLo



Dynamic Load Management of Virtual Machines in Cloud Architectures 209

denotes the average number of samples between false alarms when no significant
change has occurred in the load, and ARL1 denotes the average number of
samples to detect a significant change when it does occur. Ideally, ARLo should
be very large because we want to limit false alarms, while ARL1 should be
rather small because we do not want an excessive delay to signal a significant
load change. We know and show in Table 1 that both ARLo and ARL1 tend to
grow for increasing values of h, although ARLo shows an exponential increment,
and ARL1 a linear increment as a function of h. Hence, the best choice of
h is a compromise because too large values would improve ARLo but would
deteriorate ARL1 performance. As the reference value proposed in literature [2]
is h = 5, we initially consider the so called Baseline CUSUM having H = 50'y.
The performance of this algorithm is shown in Figures 3, where each small
triangle denotes a point in which a host is signaled as a sender. If we compare
the results in Figure 3 with those in Figure 2 (referring to a threshold-based
algorithm), we can appreciate that the total number of detections is significantly
reduced because it passes from 27 to 11. In particular, the Baseline CUSUM is
able to avoid detections due to load oscillations around the threshold value.
On the other hand, it is unable to address completely the issue of unnecessary

I - ...- ... ...-- ... '9'- -

0 9>-

0 0

0 .. ·

oa

0 "

0"

0 ..

ee

055

0 5
0 20 40 00 00 ' 00 120 140 '00 '00

s.~.

(a) Profile 1

l - - - "[l-"P- - T "[l ...0 - - -

oos

0 0

0 ..

§ oa

~ 07~
g 0.' -

0"1
ee

055 ,
50

I,
" ,

,oa 150
Saorple5

(b) Profile 2

200

, ,

I ' I

250

Fig. 3. Baseline and Selective CUSUM models



210 M. Andreolini et al.

detections related to short-time spikes, such as those occurring at samples 30,
45, 55 and 90 in Figure 3(a).

To have even a more robust and selective detection algorithm suitable for
cloud contexts, we propose a modified version of the Baseline CUSUM model,
namely Selective CUSUM, that chooses h with the goal of maximizing ARLo un
der some temporal constraints X related to the average delay necessary to signal
a significant load change. From this temporal constraint X , that is expressed in
terms of samples and ARL1, we can select the upper bound for h by referring to
the Table 1. This is not the best value for X because the choice always depends
on the application context. For example, if in our platform we consider that
a maximum acceptable delay for detecting a significant load change is around
15 minutes , by considering that samples are taken every minute , we have that
X = 15. From Table 1, we can easily get that a value of h E [7,8] exhibits an
ARL1 rv 15. Hence, a good choice for characterizing the Selective CUSUM is to
set h = 7.

In Figures 3, the three small boxes on the top denote the activations signaled
by the Selective CUSUM. We can appreciate that this algorithm determines
robust and selective detections of the sender hosts : indeed, it is able to remove
any undesired signal caused by instantaneous spikes in Figure 3(a) , and to detect
only the most significant state changes at samples 55, 185, 210 in Figure 3(b),
actually just one more (at sample 55) than the optimal selection of two signals.

5 Selection of Guests

When a host is selected as a sender, it is important to determine which of its
guests should migrate to another host. As migration is expensive, our idea is to
select few guests that have contributed to the significant load change of their
host. For each host , we apply the following three steps :

1. evaluation of the load of each guest;
2. sorting of the guests depending on their loads;
3. choice of the subset of guests that are on top of the list.

The first step is the most critical , because we have several alternatives to denote
the load of a guest. Let us consider for example the CPU utilization of fivevirtual
machines (A-E) in Figure 4 obtained by the VMware monitor.

The typical approach of considering the CPU utilization at a given sample as
representative of a guest load (e.g., [4,11]) is not a robust choice here because
the load profiles of most guests are subject to spikes. For example , if we consider
samples 50, 62, 160,300 and 351, the highest load is shown by the guest B, albeit
these values are outliers of the typical load profile of this guest . Even considering
as a representative value of the guest load the average of the past values may
bring us to false conclusions. For example , if we observe the guests at sample 260,
the heaviest guest would be A followed by E. This choice is certainly preferable
to a representation based on absolute values, but it does not take into account an
important factor of the load profiles: the load of the guest E is rapidly decreasing
while that of the guest A is continuously increasing.



Dynamic Load Management of Virtual Machines in Cloud Architectures 211

400

o

35030025015010050

0.9

0.8 

0.7-

~ 0.6

~ 0.5 

to.•
0.3~~Wtc.e':::Jv~::::~;::;:;.~;:;:::::;dj~ib"-~L:.,;l¥~~~:::::~~
02 .Y"

0.1 -:::~~:~~~~~~~;;~~~~~~~=~~~~~ ===~:'====~;'~==~:;;= =~~00

Fig. 4. Profiles of guest machines

Our idea is th at a guest selection model should not consider just absolute or
average values, but it should also be able to est imate the behavioral trend of the
guest profile. The behavioral t rend gives a geometric interpretation of the load
behavior th at adapts itself to the non stat ionary load and that can be utilized
to evaluate whether the load state of a guest is increasing, decreasing, oscillat ing
or sta bilizing. Consequently, it is possible to generate a load representation of
each guest based on the following geometric interpretation. Between every pair
of the m consecut ive selected points in the time series {Yd , i = 1, .. . ,n, we
compute the trend coefficient aj , with 0 :S j :S m - 1, of the line that divides
the consecut ive points Yi-j l ;'i,- I and Yi-(j+l l l ;'i,- I'

. _ Yi-j l;'i,- I - Yi-(j+ll l ;'i,- I · O< . < - 1"
a J - 1;;'1 ' - J - m , t < m (3)

In order to quantify the degree of variat ion of the past data values, we consider
a weighted linear regression of the m tren d coefficients:

m-I

ai = I: Pjaj ;
j = O

(4)

where a D, ... , a (m- Il are the trend coefficients that are weighted by the Pj co
efficients . This is the most general formula that can pass from not weighted
Pj values to weighted coefficients obtained through some decay distributions.
In this paper, we consider a geometric distribution of the weights P th at gives
more importance to the most recent trend coefficients . The absolute value of
the j -th trend coefficient I aj I identifies the intensity of the variation between
two consecut ive measures Yi - jl ;'i,- I and Yi-(j + l ll ;'i,-I' The sign of aj denotes the
direction of the variation: a plus represents an increase between the Yi-j l;'i,- I and
Yi- (j+lll ;'i,- 1 values, while a minus denotes a decrease. A load representation of
the guest g at sample i-th, denoted by Lf (for g spanning the ent ire set of guests
hosted by the considered physical machine), is the result of a linear combination



212 M. Andreolini et al.

between the quantitative trend, ai, and the actual load value, Yo , . . . ,Yn-i, that
is:

n-i

Lf = ai +L qjYi-j;
j=O

n-i

(5)

After having obtained a load representation Lf for each guest g, we can sort
them from the heaviest to the lightest. This operation is immediate because the
total number of guests U running on the considered host is limited.

The third final step must determine which guest(s) should migrate to another
host. We recall that the idea is to select only the guests that contribute more to
the host load. To this purpose, we estimate the relative impact of the load of each

guest on the overall load and we compute 'YI = L Y~: L; for i = 1, ..., U, where U

is the total number of guests in the host i. As we have already sorted the guests
in a decreasing order based on Lf values, the order is preserved when we consider
the 'YI values. The idea is to select for migration the minimum number of guests
with the highest relative loads. This is an arbitrary choice, but we found conve
nient to consider, as an example, the guests that contribute to one-third of the
total relative load. To give an idea, let us consider two hosts Hi and H2 character
ized by the following 'YI values: (0.25,0 .21,0.14,0.12,0.11,0.10,0.03,0.02,0.01),
and (0.41,0 .22,0.20 ,0 .10,0.04,0 .02,0 .01), respectively. In Hi, we select the first
two guests because the sum of their relative loads 0.46 exceeds one-third. On the
other hand, in H2 we select just the first guest that alone contributes to more
than one-third of the total load.

As we want to spread the migrating load to the largest number of receiver
hosts, we want that no receiver should get more than one guest that is, G = R .
Hence, we have to guarantee that the number of guests we want to migrate is G <
(N - 8) . Typically, this constraint is immediately satisfied because 8 is a small
number, 8 « N, and typically G ::; 28 . However, if for certain really critical
scenarios it results that G > (N - 8), we force the choice of just one guest for
each sender host. This should guarantee a suitable solution because otherwise we
have that 8 > R that is, the entire cloud platform tends to be overloaded. Similar
instances cannot be addressed by a dynamic migration algorithm but they should
be solved through the activation of standby machines [4] that typically exist in
a cloud data center. It is also worth to observe that all our experiments were
solved through the method based on the one-third of the total relative load with
no further intervention .

6 Conclusion

Dynamic migrations of virtual machines is becoming an interesting opportunity
to allow cloud infrastructures to accommodate changing demands for different
types of processing with heterogeneous workloads and time constraints. Nev
ertheless , there are many open issues about the most convenient choice about
when to activate migration, how to select guest machines to be migrated, and
the most convenient destinations. These classical problems are even more severe



Dynamic Load Management of Virtual Machines in Cloud Architectures 213

in a cloud context characterized by a very large number of hosts. We propose
novel algorithms and models that are able to identify just the real critical host
and guest devices, by considering the load profile of hosts and the load trend
behavior of the guest instead of thresholds, instantaneous or average measures
that are typically used in literature.

Experimental studies based on traces coming from a cloud platform support
ing heterogeneous applications on Linux and MS virtualized servers show sig
nificant improvements in terms of selectivity and robustness of the proposed
algorithm for sender detection and selection of the most critical guests. These
satisfactory results are encouraging us to integrate the proposed models and
algorithms in a software package for dynamic management of virtual machines
in cloud architectures. On the other hand, we should consider that a cloud ar
chitecture consists of heterogeneous infrastructures and platforms, guests that
must not migrate or that can migrate only within certain subsets of hardware
and operating systems. These real constraints are not taken into account in this
paper, but we are working to include them in a future work.

References

1. Page , E.S. : Estimating the point of change in a continuous process . Biometrika 44
(1957)

2. Montgomery, D.C.: Introduction to Statistical Quality Control
3. Kendall , M., Ord, J .: Time Series. Oxford University Press, Oxford (1990)
4. Khanna, G., Beaty, K. , Kar , G., Kochut, A.: Application Performance Manage

ment in Virtualized Server Environments. In: Proc. of Network Operations and
Management Symp . (2006)

5. Stage, A., Setzer, T .: Network-aware migration control and scheduling of differenti
ated virtual machine workloads . In: Proc. of 31st Int . Conf. on Software Engineering
(2009)

6. Clark, C., Fraser, K., Steven , H., Gorm Hansen , J ., Jul , E., Limpach , C.,
Pratt , 1., Warfield , A.: Live Migration of Virtual Machines. In: Proc. of the 2nd
ACM/USENIX Symp. on Networked Systems Design and Implementation (2005)

7. Travostino, F., Daspit, P., Gommans, L., Jog, C., de Laat , C., Marnbretti, J.,
Monga, 1., Van Oudenaarde, B., Raghunath , S., Wang, P.Y.: Seamless live mi
gration of virtual machines over the MAN/WAN . Future Gener. Computer Sys
tem 22(8) (2006)

8. DeFanti, T ., de Laat, C., Mambretti, J. , Neggers, K., St . Arnaud, B.: TransLight:
a global-scale LambdaGrid for e-science. Communications of the ACM (2003)

9. Hines, M.R., Gopalan, K .: Post-copy based live virtual machine migration using
adaptive pre-paging and dynamic self-ballooning. In: Proc. of the ACM SIGPLAN/
SIGOPS Int . Conf. on Virtual execution environments (2009)

10. Wei, H., Qi, G., Jiuxing, L., Panda, D.K.: High performance virtual machine mi
gration with RDMA over modern interconnects. In: Proc. of the IEEE Int . Conf.
on Cluster Computing (2007)

11. Wood, T ., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and Gray-box
Strategies for Virtual Machine Migration. In: Proc. of the 4th USENIX Symp, On
Networked Systems Design and Implementation (2007)



214 M. Andreolini et al.

12. Bobroff, N., Kochut , A., Beaty, K.: Dynamic Placement of Virtu al Machines for
Managing SLA Violations . In: Proc. of the 10th IFIPIIEEE International Symp.
On Integrat ed Network Management (2007)

13. Hermenier, F., Lorca, X., Menaud, J .-M., Muller, G., Lawall, J .: Entropy: a Con
solidation Manager for Cluster. In: Proc. of the Int . Conf. on Virtu al Execution
Environments (2009)

14. Nguyen Van, H., Dang Tran, F.: Autonomic virtu al resource management for ser
vice hosting platforms. In: Proc. of the Workshop on Software Engineering Chal
lenges in Cloud Computing (2009)

15. VMware Distributed Power Management Concepts and Use



Cloud Computing Platforms

Track Session 4





Dynamic Service Encapsulation

Alexander Kippl, Lutz Schubert', and Christian Geuer-Pollmanrr

I Hl.Rx-Hcchstleistungsrechenzentrum Universitat Stuttgart,
NobelstraBe 19,70569 Stuttgart, Germany

{kipp,schubert}@hlrs .de
2 European Microsoft Innovation Center (EMIC) GmbH,

Ritterstrasse 23,52072 Aachen, Germany
Christian.Geuer-Pollmann@microsoft .com

Abstract. Service Provisioning over the internet using web service specifica
tions becomes more and more difficult as real business requirements start to
shape the community. One of the most important aspects relates to dynamic
service provisioning: whilst the straight forward web service usage would aim
at exposing individual resources according to a fixed description, real organiza
tions would want to expose a flexible description of their complexly aggregated
products. This paper presents an approach towards reducing the technological
overhead in virtual service exposition overthe internet, thus allowing for more
flexibility. It therefore introduces a dynamic gateway structure that acts as vir
tual endpoint to message transactions and can encapsulate complex business
process onbehalf of theprovider.

Keywords: Business communication, Communication standards, Communica
tionsystem control , Communication system operations andmanagement.

1 Introduction

Today's eBusiness scenarios require a consequent realization of the Service Oriented
Architecture (SOA) paradigm. Such a consequent realization provides benefits for
both sides, the service providers as well as for the service consumers. Service pro
vider can easily provide their "products" in such a way that potential service consum
ers can integrate these services in their own products. This is done in an abstract
manner which means in particular that no implementation details of the underlying
service implementation need to be considered.

Service virtualisation goes even one step further. Here operational, integration and
life cycle issues are faced which is critical regarding the success of SOA [I].

Service virtualization has already taken place in our everyday life. An example
for such a virtual service is a banking service providing functionality allowing a client
to execute financial transactions. Therefore in the background several underlying
services are needed, like a transaction manager and a database system. The user of
the banking service does not recognize these underlying subsystems since he only
sees the interface of the banking service. Via this interface the complexity of the
underlying infrastructure is hidden from the current user. Another example is a DNS

D.R. Avreskyet al. (Eds.): Cloudcomp 2009. LNICST34. pp. 217-230, 2010.
© Institutefor ComputerSciences,Social-Informatics and Telecommunications Engineering 2010



218 A. Kipp,L. Schubert, andC. Geuer-Pollmann

or virtual network capabilities. Without virtualization it would not be possible to han
dle such complex systems at all. Altogether virtualization can be seen as a more
abstract view of the corresponding services and the underlying service infrastructure.

In modern eBusiness scenarios it is necessary to decouple service implementations
and the corresponding service interfaces . The main reasons therefore are that such a
decoupling increases fundamentally the maintainability of services as well as the
flexibility of both, service providers and service consumers.

Actually Web services provide an infrastructure towards a SOA paradigm [17] but
still have some gaps regarding the needed dynamicity in eBusiness and collaborative
working scenarios [16]. An example of the latter one is the research project CoSpaces
[2]. This projects aims to develop a framework allowing dynamic collaboration ses
sions for engineering teams being distributed all over the world. The issues being
faced within this project are to bring together the involved people within such a col
laborative working session as well as the corresponding applications. So a consequent
realization of the SOA paradigm is here also very important. In this paper we provide
an approach towards virtual services allowing a decoupling of service implementa
tions from the corresponding service interfaces .

2 eBusiness and Web Services

In current eBusiness scenarios an abstract integration of collaboration partners is one of
the main issues to be faced. In particular this means that partners within a collaboration
want to consume the provided "product" of a partner without taking into account the
corresponding service infrastructures. Web Services provide a first step towards such
an approach. Web service technologies allow the consumption of services without the
need to take into account the underlying service implementation . This is done by pro
viding a standardized interface of these services (WSDL). These interfaces are inte
grated in the customers' code allowing him to consume the corresponding services.
This interface just describes the functionality of the service in a syntactical manner. To
announce a "product" consisting of the composition of several services enforces a
more abstract view of the underlying services. One of the main disadvantages of the
web service approach is that in the case of a change in a web service interface descrip
tion the corresponding client code has also to be adapted to these changes.

Therefore abstract entities [3] have been introduced describing such a level of ab
straction in a first instance. These abstract entities allow the integration of partners in
an eBusiness process by assigning roles to partners and access the corresponding
services or products via these abstract entities. This allows the design of collaborative
eBusiness scenarios without the burden of taken into account the complexity of the
underlying service infrastructures and the corresponding service implementations.

The main goals from an eBusiness perspective are

• The easy encapsulation and usage of services being distributed all over the
world

• The easy composition of services in order to provide a "new product"

To realise these goals a new kind of infrastructure is needed with the goal to ease the
maintenance of the underlying service infrastructures. In particular, changes of an



Dynamic Service Encapsulation 219

interface or the service infrastructure should not affect the corresponding client appli
cations. Additionally, service provider should also be able to easily adapt their infra
structures without affecting the corresponding interfaces and consequently the client
applications consuming these services. The approach being presented in the following
section is also going to ease the provision of new products regarding the currently
available services.

3 A Dynamic WS Interface

Currently WSDLs describe a static interoperable interface to a service which is used
in static manner. The interface is once proposed and linked in a static manner in the
corresponding client code. This static approach does not provide the needed flexibility
in a dynamic eBusiness scenario.

To provide such an adaptive and dynamic infrastructure just a contract should be
proposed describing the name of this "virtual" service as well as the available opera
tions and what they mean in particular . Additionally it should be mentioned how these
operations can be invoked.

Service virtualization provides such an infrastructure by not directly proposing a
static interface in the means of WSDL, instead a kind of contract is proposed describ
ing the available functionality and how these services can be invoked as well as which
information is needed to invoke these services. The introduced middleware maps in
the next step after having intercepted an invocation of such a virtual service endpoint
the calls to the corresponding service implementations.

The next sections are going to reflect this new approach in detail.

The New Gateway Architecture

In this section the Architecture of the new gateway is introduced and described in
more detail. As mentioned before there is a concrete need in service virtualization and
so consequently in an abstraction layer. This abstraction layer operates as an interme
diary service between the service consumer and the service implementation by captur
ing the corresponding messages and mapping them to the corresponding services .
This mapping also includes the necessary transformations since the virtualization
gateway does not focus on a specific interface description.

Beside the mapping of messages to the corresponding service implementations
within the service virtualization layer the following jobs can also be realised within
this layer since the gateway describes a single point of entry to use the underlying
services. This is preferable since most of the SOA infrastructures are some kind of
"grown" nature with the restriction that some already existing implementations may
not be compatible with current standards in interface definitions and messaging. So
the gateway also provides functionality to encapsulate services.

In particular , this includes:

• Policy enforcement: The gateway acts as a policy enforcement point since it allows
the definition of criteria that must be fulfilled before a potential service consumer is
authorized to access a specific service. For example, it is possible to distinguish ser
vice consumers based on their reputation, e.g. in good and "not so" good customers.



220 A. Kipp, L. Schubert, andC. Geuer-Pollmann

Based on their reputation, the customers' requests are forwarded to services with dif
ferent SLAs, such as "gold" services or "standard" services, where the "gold" rated
services e.g. could provide a better quality of service as the "standard" services.

• Message security, identity and access management: In an ideal world, all deployed
client applications and web services support the corresponding specifications like
WS-Security, WS-Trust and WS-Federation . Ideally, each client application
should be able to fetch security tokens that are necessary for service access, and
each deployed service should be able to authorize an incoming request using a
claims-based security model with fine-grained authorization. Unfortunately, many
applications in production today do not yet adhere to these principles, and the
gateway can serve as a migration path towards broader adoption of the claims
based access model. The customer-side gateway can authenticate internal request
ors, request security tokens on their behalf and protect the outgoing messages. A
service-side gateway can act as a policy-enforcement point to authenticate and au
thorize incoming callers. For example the gateway can establish a secure connec
tion to the service consumer while the concrete client application does not support
any secure data transmission.

• Protocol translation: Since standards in the area of web services are always a
matter of change, the reflection of current needs of service consumers as well as
of service provider are an essential criterion for such an infrastructure . In particu
lar, the change of an addressing standard like WS-Addressing forces the adaption
of the service implementations at the service provider side as well as the corre
sponding client applications consuming these services. In such a scenario the
gateway allows the adaption of the corresponding service calls to the most cur
rent standards without affecting the concrete service implementation.

• Transformation: Since the gateway provides an universal interface for the under
lying services a transformation has to be done before the message is forwarded to
the corresponding service.

• Filtering and information leakage protection: The gateway can detect and re
move private information from a request, offering a hook to install information
leakage detection and prevention mechanisms.

• Load balancing & fail over: The gateway can act as a load balancer. If e.g. one
service is currently heavy in use the gateway may decide to forward requests to
this service to an equivalent one.

• Routing: If several equivalent services are available the routing of the messages
to these services can be handled in this abstraction layer.

• Login monitoring: Often it is interesting for a service provider to see which ver
sion of a service is still used by the customers . Via the gateway this information
is also available .

Figure I shows the structure of such a gateway. This structure enables service provider
to encapsulateand hide their infrastructure in a way that also allows for virtualization of
products. With the gateway being extensible, it provides the basis to non-invasively
enact security, privacy and business policies related to message transactions. With the
strong SOA approach pursued by the virtualization gateway, the structure furthermore
meets the requirements of minimal impact and maximum deploymentflexibility; through
its filters, it furthermore supports the standardized messaging support. The gateway is



Dynamic Service Encapsulation 221

~---------------- ------

'-------------------~/\

Fig.1. Gateway Structure

furthermore constructed in a way that allows for participation in multiple collaborations
at the same time without requiring reconfiguration of the underlying infrastructure.

The gatewayof a service provideracts as the virtualization endpointof the services
exposed by the respective organization. Its main task consists in intercepting incom
ing and outgoing messages to enforce a series of policies related to access right re
strictions, secure authentication etc. (cp. Figure 2) thus ensuring that both provider
and collaboration specific policies are maintained in transactions.

Fig. 2.The GatewayPrinciple

As a virtual endpoint, the gateway is capable of redirecting messages from virtual
addresses to actual, physical locations (local or in the Internet), thus simplifyingend
point management from client side, i.e. applications / client services are not affected
by changes in the collaboration, such as replacement of providers etc. An intrinsic
handler in the gateway channel hence consists in an endpoint resolution mechanism
that identifies the actualdestinationof a given message.

Figure 3 shows the conceptual overviewof such an approach. In particular, the virtu
alization manager of a service provider announces a virtual service interface definition
(WSDL). This virtual interface is also announced by the web server of the service pro
vider to receive external service calls via the included virtual methods. These calls to the
virtual interface are forwarded to the virtualization manager. In the following proceed
ing the virtualization manager transforms the incoming virtual message to a message



222 A. Kipp, L. Schubert, and C. Geuer-Pollrnann

that can be interpreted by the corresponding service implementation. Therefore the
virtualization manager accesses a knowledge base containing all the necessary informa
tion like e.g. the mapping of the virtual name to a concrete service endpoint and the
transformation of method names and parameters. The mapping of virtual service names
to concrete service endpoints is also needed in the case when several service implemen
tations on e.g. different machines hosting the same service are available as well as to
avoid the client to take into account concrete service implementation aspects.

Via the knowledge base it is also possible to provide services dynamically. On the
one hand new services can be announced via a new virtual interface. On the other
hand it is also possible to develop new services for already announced virtual inter
faces and map the calls from the old virtual interface to the new service implementa
tions. So the mapping logic is encapsulated in the knowledge base providing the
information needed to transform the corresponding message calls.

Service Provider

IlMI"
WSIX service

ImplementationI

Transformed message

Fig. 3. General Architecture

Realisation of the New Gateway

Referring to the statistic of used web servers within the internet of April 2009 [8]
there are most commonly used 2 web service infrastructures in current environment s.
In particular, those are the Apache Tomcat server with a contingent of 45.95% and
Microsoft Internet Information Service (lIS) with a contingent of 29.97%. The re
maining 24.06% are distributed over more than 30 other web server solutions, so they
are not being taken into account for the following technical analysis considering in
how far the service virtualizat ion manager can be realized with existing and mainly
used web services infrastructure solutions .

In the following it will be shown, how such a service virtualization manager can be
realized with the mostly used web server solutions, namely the Apache Tomcat Server
with AXIS and the lIS with WCF [I I].

To provide a service virtualization manager, an ideally transparent intermediary
service is needed acting as a message interceptor und as a message transformer. In
particular, in the area of web services a HTTP router is needed doing this transforma
tion without affecting the client calling the corresponding service as well as the under
lying service implementation. Figure 4 illustrates an example of this processing:



Dynamic Service Encapsulation 223

VinlH1l R "
I' SOl ;'I~ _~--....

~\L) Hn_ p R_O_Ule_r__-Jf-- .....>--i----
Fig. 4. Technical Realization

In particular, the HTTProuter tunnels a request from a virtual WSDLto a concrete
service calI of a "real" service interface, Therefore in this example the virtual WSDL
provides a method with the name "wsa:Action='call' . The HTTP router now maps
this web service calI to the corresponding "wsa.Actioneinvoke'" method calI of the
underlying service implementation, This is done completely transparent to the invok
ingclient as welI as to the service implementation.

Within the lIS / WCF realization the gateway infrastructure exposes virtual end
points (URLs) similar to the (lIS) and may even be hosted inside the lIS like a simple
service. The service administrator uses the capabilities of the virtualization gateway /
lIS to decide which resources / services / worktlows are exposed underwhich URL
alI other services either remain hidden in the infrastructure or are exposed without a
virtualization gateway intermediary. This way, the administrator can specify concrete
ly which services are exposed in which manner (cp. Figure5).

M,JnG,tf'WIY
Logic

fltgln ervirtual endpoint

Actua lService
I/Utan,.

Fig. 5. Gateway Structure and itsRelationship to lIS and ServiceInstances

Policy handlers can be registered at the virtualization gateway using the according
management interface and the identifier of the specific gateway structure. Each ser
vice instance can thus principalIy be associated with its own gateway and policy
handler chain, allowing for maximum flexibility .

The Service Instance Registry is a specific type of policydecision point that identi
fies the actual endpoints on basis of the transaction metadata (sender, related VO,
addressed endpoint etc.). It will instructthe message chain about the next endpoint to
forward the message to.

Axis [12] provides with the Handler concept an approach that alIows to plug-in
applications between the web server and the corresponding application services.



224 A. Kipp, L. Schubert, andC. Geuer-Pollmann

Therefore so called handler-chains can be realized describing a list of operations that
can be executed on arriving messages for a specific service or for all web services
being hosted on the corresponding web server. Figure 6 shows the general overview
of the Axis architecture:

Service

Axis Engine

Fig. 6. AxisEngine Overview [12)

In particular, incoming messages are stored in a request queue. Before these mes
sages are processed and forwarded to the corresponding service implementation the
handlers being defined for this service are executed . These handlers are able to mod
ify the incoming and outgoing messages, so at this point it is possible to plug in the
knowledge support doing the mapping and the necessary transformations of the corre
sponding messages.

4 Trust Management

In distributed-system scenarios, the main security problem is cross-organizational
authorization. Most identity and access systems available today provide flexible solu
tions for authorization-related problems within the boundaries of a single organization.
Still, IT professionals who need security solutions for cross-organizational collabora
tion typically need to develop their own custom solutions.

The BREIN project extends the security work done in former projects, such as
TrustCoM, MOSQUITO [6], NextGRID [5] or MYCAREYENT [7]. The security
research in these projects addressed problems such as human-supported federation
establishment and enactment, YO-centric identity and claims management, and au
thorization for cross-organizational service invocation. While that led to many in
sights into the YO security area, the BREIN project identified a couple of issues that
needed further research: One open question is how to leverage the human user for
context provisioning, such as why a particular service interaction happens, and subse
quently utilizing that context for security decisions. The second broader issue for
which a solution is needed is the access management for resources located outside of
the data owner's organizational trust boundary. The third topic is related to the sup
port for claims-based security in protocols that do not support WS-Security , such as
MTOM-based streaming.

In the BREIN architecture, security-related implementation artifacts are located
at various places and layers, so that BREIN can scale the flexibility of the solution



Dynamic Service Encapsulation 225

depending On the COncrete security requirements of the respective scenario. For ex
ample, it is clear that cross-organizational message exchanges always have to be inte
grity and confidentiality protected, and that the requestor needs to be authenticated
and authorized . Depending Onthe capabilities and features of the web services stacks
of both clients and application services, either the end-nodes take care of handling the
cross-organizational security themselves, or big parts of that responsibility are fac
tored into infrastructure components such as the gateway service. For example, if a
web services-based client application cannot encrypt and sign SOAP messages using
the appropriate cross-organizational security tokens, then that responsibility has to be
handled by the gateway service which is sitting in the message path, On behalf of the
client.

The Security Token Service (STS) issues claim-based tokens to authenticated users
(or a gateway acting on behalf of the user) and is also involved in the process of estab
lishing federations with other STSs' . Similarly to the gateway, the STS component
needs to be installed within the security domains of the entities that want to communi
cation and depending on the role they hold they perform different functions. Therefore
the STS can play both the role of the client side STS as well as the server side STS
performing different functions. The client-side role of the security token service issues
tokens that are necessary to pass the access check On the service side. The tokens are
generated based on the information that is extracted from the service call message. The
Service-side role of the security token service performs an authorization decision on
the ultimate service and issues a security token that will be understood by the service.
It hence has the role of a policy decision point (PDP). The STS is a middleware com
ponent and is configured using its policy store. The policy store contains both the at
tribute information about clients in the OWn organization (i.e. the claims that can be
issued), the capabilities of partner organizations (i.e. claims that the STS accepts from
other issuers), and access policy for local resources, such as web services:

• User attributes and claims can be stored either within the STS' own configura
tion, or in external attribute stores such as Active Directory.

• The trust relationships with partner organizations describe e.g. which roles a
partner company assumes in a given virtual organization, i.e. which statements
and claims the partner is authorized to issue. Essentially this is similar to
SecPAL's 'can-say' verb.

• The access policy for local services describes claim requirements for local ser
vices, i.e. which claims need to be present in the client's security token to access
a particular service.

The STS will be queried for security token issuing by the security handler. This hand
ler resides inside the Gateways and protects message that is about to be sent, and
requests access control decisions for incoming messages.

The STS is implemented using .NET and WCF. The interaction will be through
WS-* message. Most likely the component needs a network connection, although it
could (theoretically) also communicate by local inter-process communication like
named pipes. The WCF-based client-side security handler is implemented as a special
SIR binding, which fetches the routing, security and binding information from the
local SIR, creates the 'real' cross-organizational binding based On that endpoint in
formation, and dispatches the message though this cross-organizational binding.



226 A. Kipp, L. Schubert, andC. Geuer-Pollmann

Custo mer Service provider

Service Security
Instance Token STS SIR
Registry Service

\ t / -:
f J1( r IillV~ Service> >..

\ :: }-
..

Client ----+ :t SIR r-: ~ I SIR 2
~ Binchnl

'" .. Sinding

Cl Cl

\ \

Fig. 7. SIR Binding Interactions

5 Brave New World

In order to evaluate the conceptual approach of the introduced virtualization infra
structure the WCF gateway prototype integrated within the Integrated Projects (IP)
CoSpaces and BREIN [4], considering different of the mentioned benefits of such a
virtualization infrastructure .

The IP CoSpaces is facing the challenging task in providing an infrastructure al
lowing for the support of collaboration of worldwide distributed engineering teams.
Therefore CoSpaces aims to develop a framework that supports dynamic, ad-hoc
collaborative working sessions [14]. This infrastructure stresses, beside the considera
tion of dynamic aspects within collaborations, security issues to be of the utmost
priority and importance. Since security aspects usually affects every involved compo
nent within such a collaboration session, a new approach has been considered to allow
application developers as well as collaboration participants to concentrate on their
original tasks, e.g. the provision of a specific functionality within an application or the
solving of a specific problem within a collaboration , without having to consider secu
rity aspects whilst being involved in a collaboration.

Since within collaborations between industrial partners often beside services also
business critical data has to be shared, authentication, authorization and secure com
munication between participants has been determined as one of the most critical as
pects that need to be considered by such a framework. Within CoSpaces Shibboleth
has been chosen as the best suitable solution for providing an authentication infra
structure for authorization issues whilst considering dynamic aspects of such collabo
rations [15]. Therefore , the virtualization approach being presented within this paper
is going to be used to transparently integrate an authentication and authorization in
frastructure within the entire framework without affecting the underlying steering and
coordination infrastructure components as well as the corresponding shared services
and data. Consequently, the users as well as the application providers do not have to
consider security aspects within their tasks whilst the framework ensures that only
foreseen partners are allowed to access the corresponding services and data sets.

The IP BREIN faces the challenge that in today's world, enterprises, independent
of their size, have to cooperate closely with other companies to keep their competi
tiveness, as no company is capable of fulfilling all requirements alone. But setting up



Dynamic Service Encapsulation 227

these collaborations is still difficult and extremely costly. Especially for SMEs these
collaborations are not really cost-efficient, as they have to put in high efforts to be
able to compete on the market with other players. Therefore BREIN will enable ser
vice providers to reduce costs whilst maximizing profit by providing a framework that
will automatically adapt to changes in individual business needs and/or environment
in an intelligent manner. Cost and effort for service provisioning will be greatly re
duced by simplifying business goal definition, intelligent optimization and decision
making support. Therefore, BREIN is going to support the integration of "virtual"
resources in workflows in order to achieve a higher degree of flexibility. This ap
proach allows for both, an easier and more abstract usage of resources (e.g. a cus
tomer just invokes a "simulation" service without considering technical details) as
well as an increased support of dynamism in such environments by easing the re
placement of service providers (e.g. the customer still invokes a "simulation" service
whilst his own company gateway redirects this request to a new service provider).

The "classical" WSDL approach would affect in such a dynamic environment that
every client of a specific service provider has to adapt their applications to new ser
vice interfaces in case of any modification of the corresponding service provider in
frastructure or in the case of a service provider change. Additionally a lot of added
effort has to be spent for the corresponding service setup. But with the new gateway
the client does not need to update his code, although the syntactical interface may
have changed, since the messages of the calls via the old interface are mapped or, if
needed, transformed, to the interface of the new service.

With this gateway the service provider is now able to implement any adoption
needed, even regarding changes in inter-communication standards. Now it is possible
to provide several interfaces for the same service, each adapting to another interface.
E.g. one customer needs a secure connection to the service because sensible data has
to be transferred while another one uses another version of WS-Addressing [9] or
WS-Security [10].

eBusiness and the New Gateway

This approach introduces a new abstraction layer for SOAs facing the needs of eBusi
ness environments. In particular the main benefit is an increment offlexibility : Both,
for the technical as well as for the business perspective, flexibility has been increased.
From a technical point of view it is now possible to bind services statically in applica
tion codes while the corresponding service implementation can be migrated. Addi
tionally the service provider can announce the available services independently from
the protocol the potential service consumer are going to use. This way of announcing
services allows the service provider to use and re-use already existing services in a
very easy way. Beside this, the composition of services in a workflow has also been
improved: Depending on the target outcome of a workflow services can now be com
bined regarding the announced contract. The service provider is consequently able to
provide "new" products depending on the currently available resources, services and
their current payload.

Resulting from this increase of flexibility, the main benefits of this approach are

• Increased customers satisfaction: service providers are now able to adapt very
fast to different customers' needs.



228 A. Kipp, L. Schubert, andC. Geuer-Pollmann

• Easy and improved maintenance of provided services
• Efficient development since the customers' technical point of view does not

need to be considered within a concrete service implementation.
• Easy adaptation of provided services to changing web standards. Since web

standards in the area of security, addressing, reliable message transfer, etc. are
continuously under development and improvement, the corresponding service
provider has to support as most of these standards as possible.

• Decreased costs
• loose coupling can be better realised with such an approach
• Monitoring and logging in abstraction layer: enables the administrator to see

which versions of a specific service are mostly used
• Governance guidelines force the realisation of specific functionality which

is often not conforming with the current service realisation . The presented
approach can realise this requirement without affecting the service
implementation.

• Service consumer may use different end user systems to consume the corre
sponding services

• Many "grown" SOA infrastructures available are already existing and need to
be integrated. This can be realised with an extremely reduced effort with the
presented approach.

6 Conclusions

In this paper we presented an approach towards a "real" SOA paradigm and how
this can only be realized with a corresponding support of a service virtualization in
frastructure . We also presented a conceptual approach to realize this service virtuali
zation taking into account the already existing, partly grown SOA realization with
web service technologies. Finally we presented how this concept can be realized in
principle taking into account the most common used web services infrastructures. The
latter presentation showed that the current available concepts of these web service
infrastructure implementations allows an adaptation of the "intelligence" of a service
virtualization infrastructure in the sense that the corresponding knowledge support
can be added in such a way that incoming messages of a virtual service definition can
be mapped to a concrete service implementations .

Actually a first prototype of the WCF approach is available and in the testing phase
within CoSpaces and BREIN. This first prototype actually allows the mapping of
virtual EPRs to concrete EPRs including enhancements regarding security, policy
enforcement, etc. The mentioned plug-in approach makes the introduced concept
quite flexible regarding new requirements. A first prototype supporting the Shibboleth
infrastructure is also be available. Additionally, the AXIS gateway is currently
under development and will be available soon allowing a comparison of these two
realizations .

We strongly believe in the success of SOA. The presented approach describes a ne
cessary step towards an entire, SOA enabled infrastructure .



Dynamic Service Encapsulation 229

Acknowledgements

The results presented in this paper are partially funded by the European Commission
under contract IST-5-034245 through the project CoSpaces as well as through the
project BREIN under contract number IST-034556. This paper expresses the opinions
of the authors and not necessarily those of the European Commission. The European
Commission is not liable for any use that may be made of the information contained
in this paper. The authors want to thank all who contributed to this paper, especially
all members of the corresponding consortiums.

References

[I] Nash, A.: Service Virtualization - Key to Managing Change in SOA (01.06.2006),
http: / /www.bitpipe .com/detail /RES /11301712 01_512 .html
(30.04.2009)

[2] CoSpaces - EU 1ST Project (IST-5-034245), http:/ /www . cospaces. org (30.04.
2009)

[3] TrustCoM - EU 1ST Project (IST-2003-01945), http : / /www.eu-trustcom.com
(30.04.2009)

[4] BREIN - EU 1ST Project (IST- 034556), http: / /www.gridsforbusiness . eu
(30.04.2009)

[5] NextGRID - EU 1STProject, http: / /www . nextgrid. eu l (30.04.2009)
[6] MOSQUITO - EU 1STProject (lST-004636),

http: / /www.mosquito-online. orgl (30.04.2009)
[7] MYCAREVENT - EU 1ST Project (IST-04402), http: / /www.mycarevent .com/

(30.04.2009)
[8] Netcraft -Web server statistic (April 2009),

http: / /news .netcraft . com /archives /2009 /041 (30.04.2009)
[9] Box, D., et.a\.: WS-Addressing (10.08.2004),

http: / /www . w3 . org /Submission/ws-addressing l (30.04.2008)
[10] Nadalin, A., Kaler, c. Monzilo, R., Hallam, Baker, P.: WS-Security (01.02.2006),

http: / /www.oasisopen.org /committees /download .php/16790 /
wss-vl .l-spec-os-SOAPMessageSecurity .pdf (30.04.2009)

[11] WCF - Windows Communication Foundation,
http: / /msdn .microsoft . com/wcf! (30.04.2009)

[12] Axis Architecture Guide,
http: / /ws.apache.org/axis /java/architecture-guide .html
(30.04.2009)

[13] Schubert, L., Kipp, A., Wesner, S.: From Internet to Cross-Organisational Networking.
In: Proceedings of the 15th ISPE International Conference on Concurrent Engineering:
CE 2008, Belfast, Northern Ireland (August 2008)

[14] Kipp, A., Schubert, L., Assel, M.: Supporting Dynamism and Security in Ad-Hoc
Collaborative Working Environments. In: Proceedings of the 12th World Multi
Conference on Systemics, Cybernetics and Informatics (WMSCI 2008), Orlando, USA
(July 2008)

[15] Assel, M., Kipp, M.A.: A Secure Infrastructure for Dynamic Collaborative Working Envi
ronments. In: Proceedings of the International Conference on Grid Computing and Appli
cations 2007, Las Vegas, USA (June 2007)



230 A. Kipp,L. Schubert, and C. Geuer-Pollmann

[16] Schubert, L., Wesner, S., Dimitrakos, T.: Secure and Dynamic Virtual Organizations for
Business. In: Cunningham, P., Cunningham, M. (OOs.) Innovation and the Knowledge
Economy: Issues, Applications, Case Studies, pp. 1201-1208. lOS Press, Amsterdam
(2005)

[17] Golby, D., Wilson, M.D., Schubert, L., Geuer-Pollmann, c. An assuredenvironment for
collaborative engineering using web services. In: CE 2006 (2006)

[18] Wesner, S., Schubert, L., Dimitrakos, T.: Dynamic Virtual Organisations in Engineering.
In: 2nd Russian-German Advanced Research Workshop on Computational Science and
HighPerformance Computing, March 14-16 (2005)



Modeling Movable Components for Disruption
Tolerant Mobile Service Execution

Ren e Gabner" , Karin Anna Hummel" , and Han s-Peter Schwefell -"

1 Forschungszentrum Telekommunikation Wien, A-1220 Vienna, Austria
{gabner.schvefel}~ftv.at

2 University of Vienna, A-1080 Vienna, Austri a
karin .hummel~univie.ac .at

3 Aalbor g University, DK-9220 Aalborg, Denmark

Abstract. Software as a Service relies on ubiqui tous network access
which cannot be assured in mobile scenarios, where varying link quality
and user movement impair th e always connected property. We approach
this challenge by utilizing movable service components between a remote
cluster, cloud , or server and the client device using th e service. To over
come connection disruptions, service components are moved to th e client
prior to connection loss and execut ed locally. Alth ough th e basic concept
is a brut e force approach, challenges arise due to best fittin g service de
composition, accurat e estimation of connection losses, and best t rade-off
between moving service components and th e overhead caused by this
proactive fault tolerance mechanism.

This paper cont ributes to the general approach by presenting a sys
tem architecture based on an extended client/server model which allows
to move components . Additionally, an analytical model is introduced
for analyzing where to place service components best and extended to
investigate failure rat es and average execution time in different system
configurations, i.e., different placement of service components either on
th e server cloud or client side. The models presented are based on Markov
chains and allow to analytically evaluate the proposed system. Applied
to a specific use case, we demonstrate and discuss the positive impact
of placing components tempor arily at the client in terms of failure rat e
and mean service execution time.

Keywords: Mobile Computing, Software as a Service, Service Decom
position , Markov Model, Disruption Tolerance.

1 Introduction

Software as a Service (SaaS) [1] is a field in particular of interest for mobile com
puting scenarios, like support for mobile workers or mobile business in gen eral.
Instead of pre-installed softwa re packages , software is hosted and maintained at
a service provider and can be accessed by the user. In this vision , the burden
of troublesome installing, updating, and maintaining is t aken from the user. In
mobile contexts, it is even more beneficial to access t he software as a service to

D.R. Avresky e t al. (Eds.): Cloud co mp 2009, LNI CST 34, pp. 231- 244, 2010.
© In sti tute for Computer Scie nces, Soci a l-Informatics a nd Te lecomm u nicat ions E ng ineering 2010



232 R. Gabner, K.A. Hummel, and H. Schwefel

fulfill tasks without having pre-installed too many applications. Computing cloud
infrastructures are enabling system architectures for supporting the envisioned
SaaS solution .

In contrast to stationary scenarios, mobile networked systems are impaired
by varying link conditions due to fading effects and environmental disturbances
on the wireless medium, other devices competing for access to the wireless link,
and moving in and out of the range of a wireless network. As a consequence,
intermittent connectivity is likely to happen and has to be addressed to make
mobile SaaS feasible.

Our approach addresses intermittent connectivity by considering different lo
cations for service execution , i.e., at the (remote) server cloud or the mobile
client. In case of stable connectivity, service parts may remain at the server and
classical client/server communication will be efficient to assure fastest service
execution . In situations of weak connectivity and frequent disconnections, ser
vice parts have to be moved to the client to remain operational which will lead
to increased service execution times at the low performance mobile device. We
see four major challenges of the approach: First, the best fitting granularity of
service decomposition and dependencies between service components have to
be found. Second, detecting best time periods for placing service components
have to be detected, e.g., predicting disconnects in advance. Third, determining
optimized allocations of service components for a certain predicted network be
havior. Fourth, moving software service parts causes overhead and the trade-off
between availability and networking overhead has to be considered.

In this paper, we approach the third research question , as it is a motivating
prerequisite for the other challenges, by modeling a service as a composition
of parts, i.e., service components , and analyzing how the allocation of these
components to client or server side influences certain performance or reliability
metrics. Successful service execution means that the components can be accessed
and used. Intermittent connectivity now leads either to completely failed services
or delayed service execution . We consider both cases and present (i) an analyt
ical model for service failure/success evaluating the failure rate of services and
(ii) an analytical model for service execution time analysis for different com
ponent placement configurations. Hereby, our fault model consists of network
disconnection failures only.

The paper is structured as follows: After presenting a survey on related con
cepts for disconnected service operation in Section 2, we describe the system
architecture for movable service components in Section 3. In Section 4 we in
troduce the analytical model based on Markov chains. Service invocations are
modeled as transitions which may succeed or fail due to network failures. In
Section 5, we introduce the editor use case and present results for this particular
service to demonstrate the potential of both the general concept of meaningful
placement of service components for tolerating disconnections and the insights
gained by using the analytical models introduced. Section 6 summarizes the work
and presents an outlook on future work planned.



Modeling Movable Service Components 233

2 Related Work

Allowing services to be allocated and executed at different distributed locations
was a hot topic in the past years. Fuggetta et al. [4] address the increased size and
performance of networks as a motivator for mobile code technologies. Different
mobility mechanisms like migration, remote cloning, code shipping, and code
fetching are utilized to meet a diversity of requirements . We conceive temporary
proactive code migration to support our architecture best . However the main
focus is the analysis of impacts of code migration and optimization of component
location to achieve best service execution with a minimum of interruption and
delay.

When mobile communications became popular, the research area expanded and
mobile computing introduced challenges different from traditional distributed
computing. These challenges are related to mobile data management , seamless
mobile computing, and adaptations due to limited mobile device capabilities.
Imielinski et al. [5] describe the implications and challenges of mobile computing
from a data management perspective. Important aspects are (i) management of
location dependent data, (ii) disconnections, (iii) adaptations of distributed algo
rithms for mobile hosts, (iv) broadcasting over a wireless network, and (v) energy
efficient data access. While mobile networks grew rapidly, a diversity of different
mobile devices were pushed to the market, running different operating systems
and execution environments. Because of many different mobile platforms, service
development becomes complex and costly, as each platform needs its own imple
mentation of a service.

The SaaS approach can help to overcome multi implementations of services.
Instead it is possible to run a service on an execution platform within the net
work. Every mobile client with access to the network's application server can
use such services. Our architecture benefits from the SaaS approach as it over
comes complicated installations on the client and keeps the solution flexible to
reconfiguration and component migration at runtime . To execute such SaaS ser
vices which support movable components , special execution environments at the
client are required . One possible solution is presented by Chou and Li [2]. They
adapted an Android based mobile platform for distributed services, and show
one way to execute SOA based applications. This architecture supports also
access to services deployed in a SaaS environment. Because such SaaS models
depend on reliable network connectivity, disruption tolerant networks are also
of particular importance for mobile scenarios.

There are various researchers investigating in disruption tolerance . For exam
ple, Chuah et al. [3] investigate network coding schemes for disruption tolerant
mobile networks. They compare the performance of different schemes and mes
sage expiration times to enhance network connections between mobile nodes
suffering from intermittent connectivity. Another approach introduced by Ott
and Xiaojun [9] is based on the application layer and introduces end-to-end dis
connection detection and recovery schemes for mobile wireless communication
services. Such end-to-end solutions take advantage of the fact, that the observa
tion of the network is not based on information from the underlying transport



234 R. Gabner, K.A. Hummel, and H. Schwefel

and physical layers, which are not available in all cases. The network predic
tion function proposed by our architecture could benefit from such end-to-end
network state detection solutions.

An approach to deal with interrupted connections is discussed by Su et at. [10] .
They propose an architecture for seamless networking utilizing specialized ap
plication proxies at the client. Those proxies are tuned to serve a special service
like SMTP. In our proposed execution environment, proxies will only be used to
support the migration of service components.

3 Syst em Descript ion

We propose an architecture which supports mobile, wireless service execution on
thin-clients, based on the Software as a Service (SaaS) paradigm [1]. One major
constraint of SaaS is the availability of a stable, always-on network connection to
the host running the service. Applied in a mobile context, intermittent connec
tivity caused by disrupted transmissions at the air interface is a major challenge.
To overcome th is issue we propose to split the service into several service parts
(service components) applying service decomposition techniques . Selected ser
vice components are moved proactively from the service execution platform to
the thin-client in case of estimated bad network quality. The service execution
platform is expected to run on a server cloud, in this paper also simply referred
to as server.

I Service Execut ion
...... ... .

Location ServiceD Platform

.......... NW-State Predict ion

... ........... Applicat ion Server

~
Service 1

...... ® ®........

® ®

...........{~:.~
IP Intermi tt

COnnect ivi

I hln-Ctient
.. .... ..... . ....

Execution Env.

Service 1

® ..'

( ".'

-.:

Fig. 1. Overall system architecture

Figure 1 shows a service Service 1 which has been decomposed into five service
components (SCI , SC2, SC3, SC4 , and SC5). Each component is responsible
for a well defined task . After it has finished, the execution flow is passed to
another service component . This concept is sometimes termed component chain
ing model. The subsequently executed component may however depend on the
result of the previous computation, which is modeled probabilistically for the
component chaining description in Section 4.1.

The Network State Prediction (NSP) function collects and holds information
about the current state of the network connection between the server and the



Modeling Movable Service Components 235

thin-client. Additionally, it interfaces a couple of different data sources to predict
the network state condition . For instance, the observation of the network state
over a longer time period combined with additional goo-location information
can be evaluated in this component. The location data can be requested directly
from the thin-client if a GPS receiver is available or, otherwise , from a mobile
operator. Of course there are other possible data sources which can be integrated
by expanding the interface of the NSP. In case we expect network connection
degradation, the NSP triggers the application server to move components which
are essential for the execution within the next time periods to the client. If the
service components have been moved successfully to the client, it is possible to
continue service execution even if the connection is lost. In case a component is
unreachable caused by a suddenly broken network link there are two possibilities
to handle the situation: As described later in Section 4.2, the execution fails
in case of an unreachable service component. The other approach modeled in
Section 4.3 has an additional network down state to delay the whole service
execution. After reconnecting to the service execution platform, the application
server might decide to fetch back any of the service components to take over
execution again.

In order to support the decision which components should be migrated in
a specific network environment, the remainder of the paper focuses on compo
nent placement and analyze the impact of different static component placement
configurations for an example service.

4 Service Component Model

In Section 3 we discussed the system architecture including the view of a service
being decomposed into components some of which can be migrated between
client and server. In order to make substantiated choices on which configuration
to apply in a given setting, this section comes up with different Markov models
that allow to analyze the consequence of a certain static placement of service
components on client and server side.

4.1 Markov Model for Service Component Flow

An application consists of service components which may reside on the cloud
(here referred to as a single application server) or on the (thin) client. The se
quence of service components that is invoked in the course of a service execution
is modeled as deterministic Markov chain. The service components are thereby
assumed to be completely autonomous and are executed sequentially ; as a con
sequence the only interaction between service components occurs when passing
the execution flow from component i to component j, where i ,j = 1, ...N. The
transition probabilities between states in the Markov chain model (which corre
spond to service components) depend on the service type, usage patterns, and
input objects. Those transition probabilities are collected in the stochastic ma
trix P .l The Markov chain model contains exactly one absorbing state, whose

1 Note , that we use bold fonts for matrices and vectors to improve readability.



236 R. Gabner, K.A . Hummel, and H. Schwefel

meaning is a successful service completion . Without loss of generality, we order
the states in this paper in a way that state N is always the absorbing success
state. The initial state, i.e., first service component called, can be probabilisti
cally described by an 'entrance vector' PO . The examples discussed later in this
paper always assume state 1 as the single entrance state, hence Po = [1,0 , ..., 0].

As the application model described by the transition probability matrix P
(and the entrance vector Po) only describes the probabilistic sequence of com
ponent executions , it has to be slightly modified to allow for notions of execution
time. Namely mean state-holding times TI, T2,...TN-I for the N -1 states (the
absorbing success state, here assumed state N , does not require an associated
state-holding time) need to be defined which then allow to transform the discrete
model into a continuous time Markov chain where the generator matrix Q is just
obtained via correct adjustment of the main-diagonal of the matrix

such that the row-sums of Q are all equal to zero.

Client Movable
Service

Components

Server

Fig. 2. Decomposed service with movable components

Some of the service components cannot be freely migrated between server and
client side. Typical examples include user-interface components that naturally
have to reside on the client, or service completion states that require centralized
storage of the result in the application server, hence are fixed to reside on server
side. See Section 5.1 for an example. Other service components can be migrated
between client and server side, as illustrated in Figure 2. The vector c E [O,I]N
represents a specific placement of components on client and server side; here we
use c(i) =°for a client-side placement of component i. If the service execution
flow passes from a component i to another component i, this transition requires
network communication, if and only if these two components are located on
different physical entities, i.e., c(i) l' c(j) .

The goal of this section is to come up with quantitative models that allow to
calculate application reliability and performance for specific static configurations
c; the process of how such configurations are created, e.g., the download of the



Modeling Movable Service Components 237

component to the client, is not considered. These models are developed in the
following subsect ions.

4.2 Service Success/Failure Model

In the first scenario, we describe a modification of the discrete time Markov chain
p such that the modified model P' (c) allows to compute the probability that
the applicat ion is successfully completed given a certain component placement
described by c. As we consider the modified model for a specific given configu
ration, we drop the dependence on c in the following for notational convenience.
The properties of the communicat ion network are assumed to be described by a
simple Bernoulli process, i.e., whenever network communication is needed upon
tr ansitions of the execut ion flow to a component placed on the different physical
ent ity, the network is operat ional with probability 1 - PI and the transition to
the new service component succeeds. If network communicat ion is not successful,
the new service component cannot be executed and service execution fails.

without remote interact ion

including network model
for remote interaction

Fig. 3. Extended service component model includingnetwork failure

The modifications of the Markov chain to capture such behavior in the ex
tended model P' are illustrated in Figure 3. The matrix P ' contains one more
state, state number N +1, which resembles an absorbing service failure state. Ev
ery transition i ---., j ,where i ,j = 1, ..., N between service components placed on
different ent it ies is parti ally forked off to the fail state with probability PI' The
probability of a service failure can be computed as the probabili ty of reaching
the absorbing fail state, i.e.,

Pr (serv ice failure) = ( lim Po ' p,k) e~+I '
k-.oo

where e~+I is a column vector with all components set to 0 except component
N + 1 which is set to 1. The service failure probability can hence be computed
numerically, see Section 5.2 for examples.

4.3 Execution Time Model

The Markov model in the previous section allows to calculate service success
probabilities defined by the probability that the network communication is avail
able for remote component interact ions in a probabilistically chosen execut ion



238 R. Gabner, K.A. Hummel, and H. Schwefel

sequence of service components. If the network is not available (which occurs ac
cording to a Bernoulli experiment with probability Pf when the execution flow is
migrated to a remotely placed component) , the service execution is stopped and
considered failed. There are however cases of elastic or delay-tolerant services
in which a temporarily unavailable network connection just creates additional
delay. Another variant is that the network connectivity is not completely unavail
able but rather in a degraded state which leads to longer communication delays.
In the following, we describe a Markov model transformation which allows to an
alyze the impact of such additional network disruption delay on the distribution
of the service execution time for different placements of the components .

We use the continuous time version of the service model, i.e., a Continu
ous Time Markov Chain (CTMC) , described by the generator matrix Q, see
Section 4.1. The service execution time without considering component place
ment and network interaction is then the phase-type distribution [7,8] described
by the first N - 1 states.

without remote interact ion

including network delay model
for remote interactio n

Fig.4. Extended service component model including network failure and execution
time

The following model of the execution time behavior for the client-server con
figuration c of the service components is employed: First all software components
that are executed on the client side are assumed to execute more slowly by a fac
tor of kclient . This is reflected by scaling all corresponding rows of Q by a factor
of l /kclient . For the communication behavior , the following two input parameters
are required in addition to the network failure probability PF (i) A matrix D ,
whose elements Di,j specify the mean communication delay for the activation of
component j from the remote component i. (ii) The mean time until network
recovery Dfail . The generator matrix of the CTMC for the distributed c1ient
server implementation under such assumptions on the remote communication
delays is then obtained by adding two additional delay states for each transition
i --+ j with Qi,j f=. 0 and c(i) f=. c(j). Let's assume these two additional delay
states obtain labels H + 1 and H +2, then the following modified transition rates
are employed in the extended matrix Q' (illustrated in Figure 4):



Modeling Movable Service Components 239

Q'(i,j) = 0; Q'(i , H +1) = pjQ(i ,j); Q'(i , H +2) = (1 - Pt )Q(i,j)

Q'(H +1,H +2) = l /Dtail, Q'(H +2,j) = l /Di ,j '

The diagonal elements of Q' need to be adjusted accordingly. If component i
and j are placed on the same entity (c(i) = c(j)) , then Q'(i,j) = Q(i ,j) . Note
that using a matrix for the remote communication delays allows to distinguish
between component s that may have different sizes of parameters/data associated
with their remote call. For the numerical examples in Section 5.3, we however
employ Di ,j = 1 for all i , j .

The extended generator matrix Q' then contains the phase-type distribution
(time until reaching state N , which is assumed to be the service success state), for
which the standard matrix calculations for moments , tail probabilities, or density
values can be applied, see [7,8] . Numerical results are presented in Section 5.3.

Note, that many variants of the Execution Time Model can be defined: For
instance, the current approach in Figure 4 assumes that the network is opera
tional with probability 1-Pt and in that case the remote component call can be
successfully finalized. One could of course also consider the case that the network
connect ion can fail during the remote component call, which would correspond
to a transition from state H +2 to state H + 1 in the figure. Similarly, more
general network down times than exponential can be represented by replacing
state H +1 by a phase-type box of states.

5 Numerical Results

In the following we present numerical results to illustrate the service failure and
execution time models for the example of a text editor service.

5.1 Text Editor Example Service

The editor example described below is used in Sections 5.2 and 5.3 to exem
plify results of the introduced Markov models. Figure 5 shows the discrete time
Markov model of the editor , including the values of the transition probabilities.

The transition probabilities are chosen so that they approximately resem
ble average user behavior: Component 2, the Editing Framework, is used most
frequently as it processes the input of the user. Any key press or menu bar
activity is communicated from the UI to the Editing Framework. Thus , the
transitions between UI and Editing Framework component are most frequently
taken. Creating, opening, or saving a document (components 3 to 5) are less
likely operations compared to keystrokes. Components 1 (user interface) and 6
(service success) are special with respect to placement in the client/server ar
chitecture. The user interface needs to be executed on the client, and the final
success operation is assumed to include storage of the document in the server
cloud, hence must be located at the server. This fixes two of the components in
the configuration vector c.



240 R. Gabner, K.A. Hummel, and H. Schwefel

F ig. 5. Example use case text editor service

server

server

server

server

@) ~
config 1 client server server server server

con fig 2 client server server server client

config 3 client client server server server

config 4 client client client client client

Fig. 6. Editor example configurations

We consider four different static configurations to analyze the execution char
acteristics of the editor as summarized in Figure 6. For configuration 1, every
thing expect the VI is located at the server. This is a pure SaaS configuration .
For configurations 2 and 3, exactly one component in addition to the VI is placed
on the client (note, that the selected components are used with different frequen
cies). Configuration 4 is placing all movable components on the client, hence, this
configuration puts the highest resource requirements to the client.

5.2 N umerical Results for Service Success Probability

The editor example service is now used to exemplify the Markov model capa
bilities and to show the type of analysis and conclusions that can be obtained
from the service success model in Section 4.2. Figure 7 shows the calculated
service failure probabilities for the four different placement configurations of
service components (Figure 6). The probability of network failure upon remote
component interaction, Pj , is varied along the x-axis. The best possible scenario
results when all editor components are placed on the client (solid line), so that
only a single network interaction is necessary, namely the one connected to the
transition to the success state (at which the edited file is stored at the server).
As there is exactly one network interaction necessary in this case, the service
failure probability is equal to PI in this case.

At the other extreme, the full SaaS configurat ion in which only the user
interface is placed on the client (dashed-dotted line), frequent network



Modeling Movable Service Components 241

Service Failure Probability: Edlfor example

. - - '.- '-
0.9 -

/

O.8 ~ , ~,,
0.7 - I

I

I

0.90.80.7

- _ . SaaS: only UI on client
UI and function ' SAVE' on client

- - - UI and edibng Irameworl< on client
-- All components onclienl (exceptsuccess)

/

,/
,/

".:

0.4 0.5 0.6
Pr(nelwolk failed): P,

0.30.20.1

,
03 -j

/
/,

/
/,

/
r,

0.2 --1 "
I ,

I ,

0.1 ~ II, ,
oj~'~--=-:----=-=----=-=----:----__---==============::::::..o

_ 0.6 '- I

¥ 1
~ i
~ 05 i
5: ,
"[ 04-!

I

Fig. 7. Service failure probability of the editor service in four different component
placement configurations

interactions are necessary in particular for transitions between the UI and Edit
ing Framework component leading to a rapid increase of service failure proba
bility already for very small parameter ranges of PI' Hence, the SaaS approach
is in this example only useful for scenarios of good network connectivity (PI well
below 5%). Moving the service component Save to the client actually increases
the service failure probability slightly due to the necessary interactions between
editing (remaining on server) and saving (moved to the client), however hardly
visible in Figure 7. Placing the Editing Framework instead on the client leads to
a dramatic improvement: For instance , a service failure probability below 40%
can be achieved also for network failure probabilities up to more than 20%.

Due to the simple structure of the editor example , the qualitative superiority
of the configuration placing UI and Editing Framework both on the client is
intuitively clear. However, the Markov model can be used to substantiate such
choices with quantitative results and it can be argued whether moving a compo
nent might even worsen the failure rate. In particular for more complex service
component interactions the Markov model can be used to make optimized choices
about which component to place on client-side.

Note, that the four curves in Figure 7 never cross. Hence, when purely op
timizing placement choices based on minimizing service failure probability, the
network quality (expressed by PI) does not influence the 'ranking' of the different
placements .



242 R. Gabner, K.A. Hummel, and H. Schwefel

5.3 Numerical Results for Execution Time Analysis

In the following we present numerical results to illustrate the application of the
execution time CTMC from Section 4.3. The results use the same modular text
editor service as previously for the service failure probability analysis . The mean
state-holding time for the different states (assuming execution on the server) are:

T U1 = 1, Ta« = 0.1, T n ew = T open = T save = 1.

Due to the possibility of rescaling time , we use configurable units of time in the
investigations below; for illustration, seconds can be assumed.

Editor example: \"'tl/l=10.0, 0,. iI2O.O

"
220r-- - ,-- - ,-- ---,,....-- ---,- - - - - ---,- - ---,- - ---,- - -,.- - --,

1 90~

. - - SaaS: only UI ond ianl
. UI and tunction ' SAVE' on enent

- - - Ul andedibngframework 00 dianl
--All componants on d ianl (axcepisuccess)

130-

~
120~ -

"

/,.,
,

"

'j

. t..g 180 .,

g .,'
~ "

~ 170 . /.. /

.~ 160 . t

~,
c -,

ill 150 .'
E . t

I
140 ;

I

0.1 0.2 0.3 0.4 0.5
P,

0.6 0.7 0.8 0.9

Fig. 8. Mean service execution time [units of time] of the editor example in four dif
ferent configurations

The execution of the service component on the client is assumed to take
kclient = 10 times as long as the execution on the server. The remote call of an
other module is for all module pairs the same, Di j = 1. If the network connection
is down (with probability Pf) , the mean time to recovery is exponentially dis
tributed with mean Dfail = 20. Figure 8 shows the mean application execution
times for the same four component placement configurations as in the previous
section. The full SaaS approach leaving all components on the server (dashed
dotted line) requires frequent network interactions, which degrades application
execution time dramatically already for rather small probabilities PI ' When mov
ing the Save component to the client , the execution time even increases showing



Modeling Movable Service Components 243

that this configuration is not beneficial. Installing all components on the client
(solid line) minimizes the impact of the network quality (as expressed by PI) '
However, for parameter ranges of PI smaller than approx . 15% in the calculated
example, the solution of having both the UI and the Editing Framework ex
ecuted locally on the client performs best . The latter is a consequence of the
slow-down factor kclient of the processing at the client.

In summary, the calculation model can here be used to dynamically optimize
the execution times via changes of the component placement depending on net
work quality. Note that the execution times grow linearly with PI; as the network
functionality does not change the execution flow through the modules (only its
timing) , the number of remote component invocations stays the same, hence PI
linearly scales into mean service execution times .

The representation of the execution time as phase-type distribution also allows
to calculate numerically the density, tail probabilities, and higher moments of the
execution time distribution. For the example configurations, wecalculated the co
efficient of variation (variance normalized by the square of the mean) of the exe
cution time distribution for all configurations . The results showed that placing all
components on the server not only dramatically increases the mean time, but also
shows a higher variability in the application execution time. (The variance can be
a useful input for an NI/G/l queuing type of analysis , as then the mean queue
length and system time only depend on the first two moments of the service time,
e.g., P-K formula [6]).

6 Concl us ions

In this paper , an architecture and modeling approach for movable service compo
nents has been presented targeting the Software as a Service paradigm. Moving
service components from a server cloud to the mobile clients allows to toler
ate disconnection periods , which are likely to occur in mobile scenarios. First,
we described the concept of moving crucial service components from the server
cloud to the client. Second, we presented analytical models to investigate the
potentials of proactive placement of components. The models are generic for
disruption tolerant computing based on movable components and allows to give
insights for various, even complex services.

The usefulness of the analytical models has been demonstrated for a sample
editor use case service, consisting of network intensive and non-network inten
sive components . In this use case and realistic parameter settings, evaluation
results in terms of failure rate and mean service execution time showed indeed
the potential benefits of moving service components to the client in case of ex
pected frequent networking failures. These results are encouraging for extending
the approach in future work both in terms of proposing means for triggering
proactive service component migration and investigating the trade-off between
messaging overhead and decreased service failure rate.

Acknowledgments. This work has been supported by the Austrian Govern
ment and by the City of Vienna within the competence center program COMET.



244 R. Gabner, K.A. Hummel, and H. Schwefel

References

1. Bennett, K ., Layzell, P., Budgen, D., Brereton , P., Munro, M., Macaulay, L.:
Service-based Software: The Future for Flexible Software. In: 7th Asia-Pacific Soft
ware Engineering Conference, pp. 214-221. IEEE Computer Society Press , Los
Alamitos (2000)

2. Chou , W., Li, L.: WIPdroid - A Two-way Web Services and Real-time Communi
cation Enabled Mobile Computing Platform for Distributed Services Computing.
In: Int ernational Conference on Services Computing, pp . 205-212. IEEE Computer
Society Press, Los Alamitos (2008)

3. Chuah, M., Yang, P., Xi, Y.: How Mobility Models Affect the Design of Network
Coding Schemes for Disruption Tolerant Networks. In: 29th International Con
ference on Distributed Systems Workshop, pp . 172-177 . IEEE Computer Society
Press , Los Alamitos (2009)

4. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding Code Mobility. IEEE Trans
actions of Software Engineering 24(5), 342-361 (1998)

5. Imielinski, T., Badrinath, B.R.: Mobile Wireless Computing: Challenges in Data
Management . Communications of the ACM 37(10), 18-28 (1994)

6. Kleinrock, L.: Queueing Systems. Theory, vol. I. John Wiley & Sons, New York
(1975)

7. Lipsky, L.: Queueing Theory : A Linear Algebraic Approach , 2nd edn . MacMillan
Publi shing Company, New York (2009)

8. Neuts, M.: Matrix-Geometric Solutions in Stochastic Models, Revised Edition.
Dover Publications, London (1995)

9. Ott, J ., Xiaojun , L.: Disconnection Tolerance for SIP-based Real-time Media Ses
sions. In : 6th International Conference on Mobile and Ubiquitous Multimedia.
ACM Press, New York (2007)

10. Su, J. , Scott , J ., Hui, P., Crowcroft , J ., de Lara, E., Diot , C., Goel, A., Lorn, M.H.,
Upton, E.: Haggle: Seamless Networking for Mobile Applications . In: Krumm , J .,
Abowd, G.D. , Senevira tne , A., Strang, T . (eds.) UbiComp 2007. LNCS, vol. 4717,
pp . 391-408. Springer, Heidelberg (2007)



Cloud Computing Applications

Track Session 1





Virtual Distro Dispatcher: A Light-Weight
Desktop-as-a-Service Solution

S. Cristofaro, F. Bertini, D. Lamanna, and R. Baldoni

Dipartimento di Informat ica e Sistemistica "Antonio Rub erti"
"Sapienza" Universita di Roma, Italy

{cristofaro,flavio.bertini ,davide .lamanna,
roberto .baldoni}~dis.uniromal .it

http://www.vdd-project.org

Abstract. Utility computingcan occur at different levels. From Software
as-a-Service (SaaS) par adigm, Desktop- as-a-Service (DaaS) paradigm can
be derived: desktops can be tr ansformed into a cost-effective, scalable and
comfortable subscript ion service. In VDD,desktop virtu al machines are in
stanti at ed on a server and then provided to clients as a whole, on demand ,
across a network . Since the first release and publicat ion, new features have
been implemented and perform ance improvements achieved . As virtual
izat ion holds a critical role in the system, research and tests have been
done for implementing the best virt ualization solution . A comprehensive
performance analysis is presented, depicting result s that encourage to go
on with th e research and towards a real-life use. Operational costs analy
sis showed further economic and ecological advantages. Th e possibility to
project operating systems not natively support ing the Xorg XlI has been
introduced, opening the way to th e projection of widespread though pro
prietary operating systems.

Keywords: XEN, UML, LTSP, Trashware, VDD-Project, Utility
computing.

1 Introduction

Cloud computing architect ures are rapidly spreading over the world of IT , sup
porting the idea of provisioning various computing capabilities"as-a-service" , in
a transpar ent way for users. Information is stored in servers on a network and
cached temporarily on clients, such as desktops , entertainment centers, table
computer s, notebooks, wall computers, handhelds, etc . [7] . Reliable services are
delivered to clients from next-generat ion data centers based on virtualizat ion
technologies. Some of the most relevant issues brought about by this paradigm
are whether or not this is really feasible on a geographical scale, where network
latency matters, and, more generally, whether or not a browser can really sub
stitute every kind of computer application . Finally, big privacy issues rise: users
data and work are given away in the hands of third parties, without any control
and any real guarantee. Without necessarily dealing with these"cloudy" aspects ,

D.R. Avresky et a I. (Eds.) : Cloudcomp 2009, LNI CST 34, pp . 247- 260, 2010 .
© Institute for Com puter Scie nces , Social-Informa t ics an d Te leco m munications Eng inee ring 2010



248 S. Cristofaro et al.

it is always possible to reason about the more general concept of Utility comput
ing, according to which computing resources, such as computation and storage,
can be precisely metered and packaged, similarly to what happens with a tradi
tional public utility, apart from the fact that the distribution of such a service
happens to be in "The Cloud" . Utility computing can occur at different lev
els. As long as applications are concerned, one talks about Software-as-a-Service
(SaaS): applications are hosted as a service provided to users across a network
(e.g., the Internet) . If systems are concerned, one can talk about Desktop-as-a
Service (DaaS): desktops can be transformed into a cost-effective, scalable and
comfortable subscription service. Desktops are instantiated on a server and then
provided to clients on demand across a network. Virtual Distro Dispatcher [1] is
a distributed system whose aim is to project virtual , fully operational operating
system instances on terminals.

z
j l

~",lt ch

XII ; va:;

I h ill
Uic' f1l

tv c:t y u hl
PC)

VD D

In t f"l
tl 1.." I

,-
/
~\ ..... \

\ ,
\ ~

\
\

•

Fig. 1. Virtual Distro Dispatcher general scheme

The VDD architecture is represented in the Figure 1. More detailed informa
tion of the whole system are widely discussed in [1].

Client terminals can be obsolete PCs or energy saving thin clients (such as
mini-I'I'X) managed by a powerful, multiprocessor (and possibly clustered) cen
tral system. The previous version of VDD, presented in [1], has got many limita
tions: Performances were still weak; Virtualization was performed only through
UML[2] instances ; Only Linux kernel based distributions could be projected on
terminals. The new implementation of VDD hereby presented has focused in
particular on performance improvements (as described in Section V). Moreover,
operating systems other than Linux (e.g., Open Solaris, ReactOS , Microsoft
Windows®...) can be accessed from terminals, thanks to the introduction of
XEN [3] virtualization system . VDD gives users the possibility to enjoy their own
favorite operating systems, including those that are not Open Source, possibly



Virtual Distro Dispatcher: A Light-Weight Desktop-as-a-Service Solution 249

at the same time , on each single thin client. It is important to remember (see
[1] for details) that thin clients are interfaces to proper and isolated machines,
that can be made to measure for whatever need and in whatever number (within
server limits, of course). This is completely transparent to users, who, even from
an obsolete machine, can select a particular machine with certain characteristics
and then do absolutely everything they would do on such a machine as if it was
physical and with its performance . Another dutiful remark regards licensing.
Virtual Distro Dispatcher uses Open Source/GPL software and free communi
cation protocols and it is released as Free Software. The infrastructure allows
to run proprietary operating systems as guests and this is regulated by specific
licenses, costs and limitations, that should be taken into account by VDD users.

2 Related Work

Using the taxonomy in [6], it is possible to identify three types of virtualized
client computing (VCC):

1. Application: Encapsulating and isolating a specific application from its
underlying host operating system and running it in the client environment,
isolated from other applications running locally. Examples: Citrix Presenta
tion Server (version 4.5+) , Altiris Software Virtualization Suite, Thinstall,
Microsoft SoftGrid, Trigence AE, Endeavors ;

2. Desktop: Using virtualization to decouple the client environment (includ
ing operating system, application and data) from its host hardware and
isolating it from other software or systems running on the client. It can be
server-hosted or client-hosted . Server-hosted examples: VMware VDI, Vir
tual Iron VDI, Citrix XenDesktop , Qumranet Solid ICE. Client-hosted exam
ples: VMware ACE/Player/Workstation/Fusion, SWsoft Parallels, Kidaro
Managed Workspace, Sentillion;

3. Virtual user session: Creating multiple user sessions on the server, within
a single operating system , that can be accessed concurrently. Examples:
Citrix Presentation Server, Microsoft Terminal Services, Sun Secure Global
Desktop Software.

Within these three types of VCC, two delivery models can be adopted (again in
[6]):

- Remote interaction: I/O operations between a client device and a server
through specific (and sometimes proprietary) protocols and software;

- Remote streaming: delivering executable blocks of data from a server to a
client device, through specific (and sometimes proprietary) protocols and/or
software.

VDD is in between type 2 and 3, as desktop virtualization software is used to
host multiple unique and isolated client environments aboard a single server (or
a group of servers in a cluster). Interaction with these remote virtual desktops
is performed through virtual user (graphical) sessions. VDD exploits network



250 S. Cristofaro et al.

transparency of X-Window-System: the machine where an application program
(the client application) runs can differ from the user's local machine (the display
server). X-Window-System clients run on virtual servers and create multiple user
sessions within multiple virtual environments. X-Window-System display servers
run on thin clients (terminals) . VNC protocols can be used for OSs which lack
of Xll server (e.g. Windows and ReactOS) , so both delivery models listed above
are available.

The need for multiple development environments, especially in research lab
oratories, but also in teaching or developing circumstances, made the study of
heterogeneous systems integration quite important . The availability of different
operating systems at the same time , give users the possibility to develop soft
ware applications and to test them in several environments directly from their
terminal , pursuing software portability. Other products supplying for this kind
of service started to be developed. For example, an interesting DaaS system,
Cendio Thin Line", that is a LTSP based architecture like VDD, allows users
to access remote desktops from everywhere/. Another example is NoMachine
NX3 , which virtualizes desktops over the Internet too. VDD's main advant age is
that only FreejOpenSource Software has been used, this being one requirement
of our research. Another advant age is the extreme lightness, as highlighted in
Section V. Development of virtualization systems plays a fundamental role in
our research, mainly for performance issues. This is highlighted in section III ,
where more related work on this matter is cited.

3 Virtualization

Virtualization holds a critical role in VDD, as it enables the possibility to run
multiple and diverse operating system instances to be projected to each thin
client . The present piece of research focused on performance issues, hence several
considerations and tests have been done in order to choose the best virtualization
solution .

Unfortunately, the x86 architecture is more difficult to virtualize with respect
to others, due to the presence of some particular instructions, such as the ones
related to memory segmentation [5]. Even though, its large diffusion stimulated
the development of many techniques to overcome such architecture limitations.

One of the most used virtualization techniques is the binary rewriting (also
known as binary translation) which consists in scanning the code of the running
guest with the aim of intercepting and modifying privileged instructions in order
to fit in the virtualization system. Therefore, there is no need to modify the
operating system source code, since all changes are made at run-time. On the

1 http:/ /www.c endio .com/products/thinlinc
2 VDD is focused on projecting different operating system instances in the same LAN

at th e moment . Dispatching Linux on terminals over the Internet is technically
possible, but not considered as something to deal with , at the moment (see also
Section VII) .

3 http:/ /www.nomachine.com/



C3
C4 
C5
C6 -

Virtual Distro Dispatcher: A Light-Weight Desktop-as-a-Service Solution 251

other hand, there is a loss of performance, especially where the code contains
several privileged instructions. The most popular virtu alization syste ms using
binary rewriting are VMware" and Virtu albox'' .

Anoth er important technique is paravirtualization. It modifies privileged in
st ruct ions, but at compile time instead of run- time. Even though modifying the
guest operatin g systems source code implies an ext ra effort, one may notice a
considerable performance increase, getting very close to an unvirtualized sys
tem (see Sect ion V). Xen is one of the most powerful and famous virt ualizat ion
system using mainly such a technique.

A more recent solut ion is the Hardware Assisted Virtualization. The last gener
at ion of AMD and Intel CPU s, have been developed with different virt ualization
extensions for x86 architecture", The main purp ose of these exte nsions, is to
speed up th e whole virtualization process and to make it easier for x86. Perfor
mance are in between the binary rewriting and paravirt ualizat ion techniques.

The choice of the virtu alization syste m is fundament al to make VDD as per
formant as possible. Since the previous version of VDD uses User Mode Linux
to dispatch Linux on termin als (for that reason, it was possible to emulate only
Linux distributions), in order to make the right choice of a valid alternative and
to add new functionaliti es, it has been useful to delineate a new list of const ra ints
for our purposes (Table 1):

Cl - Open Source Software
C2 - Support for OS guest virtu alization other than Linux (e.g. Mi-

crosoft Windows'b')
Quick and easy to restor e
Symmetric Mult i Pro cessing (SMP) OS guest support
User level kernel execution
Integrat ed VJ\C Server

Table 1. List of main VDD constraints

Cl C2 C3 C4 C5 C6
VMWare ..j ..j ..j ..j0

VirtualBox vi' ..j ..j
UML ..j ..j ..j
Qemu ..j ..j ..j ..j ..j
XEN ..j ..j1U ..j ..j ..j

4 Since the version 5.5, Vmware Workstation also supports the Hardware Assisted
Virtualization technique. The 6.0 version and above, supports also Linux guest par
avirtualization.

5 VirtualBox also supports Hardware Assisted Virtualization.
6 AMD introduced the AMD-V extension (also known as Pacifica) whereas the tech

nology used by Intel is called VT-x.
7 VMware supports a maximum of two virtual processors per guest. VMware ESX

Enterprise edition, supports up to four virtual processors.



252 S. Cristofaro et al.

Both Qemu and XEN satisfy most of the above main constraints, but tests
showed that XEN is absolutely more performant than Qemu, mainly due to its
use of paravirtualization for the guest OS supporting it ll .

4 Extension of Functionalities

The aim ofVDD is to project virtual Operating Systems instances on thin clients.
Unlike LTSP-only based architectures, offering only the host operating system
to thin clients, VDD uses virtualized guest systems like sandboxes to prevent
users from breaking into the central server . The isolation conditions produce an
high security level both for the user and the overall system .

Since the beginning of the project, the utilization of UML allowed to run many
different Linux distributions in user space. The next step was to introduce XEN
as an alternative to UML. Although using XEN implies not to use completely
user space virtualized systems, it is now possible to support much more operating
systems other than Linux.

The introduction of advanced virtualization techniques made the system more
performant as a consequence of both Hardware Assisted Virtualization and par
avirtualization support. A further advantage comes from the possibility to assign
many virtual CPUs to the guest systems, granting the symmetric multi process
ing to CPU-bound multi-threading tasks.

In the previous VDD version, UML was the only virtualization system , so
the graphical subsystem was constituted only by Xorg Xll client/server model
as the session projecting vehicle. The possibility to project operating systems
not natively supporting the Xorg XlI, brought to the need to set up a VNC
client/server architecture. This has been possible thanks to the integration of a
native VNC server inside XEN. In fact, a custom VNC client bash script has
been added to LTSP [4] (running on Gentoo GNU/Linux) so that it could be
possible to use it on thin clients, even if they are obsolete hardware.

Another strong point of this new release ofVDD is to go over the technological
gap due to the Trashware [8]. It is now possible to run a last generation operating
system on an obsolete PC, like if it was running on a last generation computer,
with negligible performance drop . For example, granting just for the sake of
argument that it can be considered an actual bargain, it is now possible to run
Microsoft Windows Vista®on a very old PC with a few memory resources.

5 Performance Analysis

A massive number of tests have been carried out in order to stress in depth
system resources, such as CPU, memory, storage and network. For each such

8 Only for the Server Edition.
9 VirtuaIBox Open Source Edition has less functionalities respect of the closed source

edition.
10 XENneedsthe VT-xor AMD-V technology to run unmodifiable OperatingSystems.
11 For non paravirtualizable OS guests, XEN uses a customized Qemuversion.



Virtual Distro Dispatcher: A Light-Weight Desktop-as-a-Service Solution 253

system resource, one particularly significant test is hereby presented. The aim of
the performance analysis is to understand as deeply as possible what happens
at a system level in order to make then considerations about how this affects
the desktop level. Tests have been performed on two architectures, 32 bit and 64
bit 12 , using LMbench as the principal benchmark suite. In order to publish such
tests, the LMbench license requires that the benchmark code must be compiled
with standard gcc compilation flags . Furthermore, some standard applications,
like Linux kernel compilation or John The Ripper benchmark have been used in
tests. The testbed has got the following characteristics:

- Intel Core 2 Quad 6600
- RAM 4GB (667 Mhz Dual Channel)
- 2 SATA 500 GB Hard Disks (RAID 0)
- 2 1000Mbps Ethernet switches
- 10 diskless thin clients
- 14 1000Mbps Ethernet cards
- Cat. 6 FTP Ethernet cables

All tests have been carried out on the host system and inside the virtual ma
chines, both for XEN and UML, in 32 and 64 bits both for the host and the
guest systems. By host, the real host system is meant, i.e. an unpatched stan
dard Gentoo Linux distribution, without any modification. Confusion should not
be made with the XEN or the UML host , whose benchmarks are not relevant
for comparisons . Hence, all tests have been performed on the standard host and
within XEN and UML virtual machines. The following cflags have been used to
compilel'' the analyzed systems:

Table 2. CFLAGS for VDD circumstances (host , UML and XEN)

Standard host system -marcheenative -fomit-frame-pointer -pipe -02
Host and guest UML systems -march=native -fomit-frame-pointer -pipe -02
Host and guest XEN systems -marche.native -fomit-frame-pointer -pipe -02

-mno-tls-direct-seg-refs

Since the vanilla Linux kernel already includes virtualization patchesl''
(paravirt-ops) , tests have been performed both using the XEN source patches
and vanilla Linux kernel, as regards guest tests.

In order to make a CPU-bound test, John The Ripper has been used. It
includes benchmarks for all supported hashing algorithms . Such benchmarks
are particularly suitable for the purpose of this investigation , since they make it
possible to precisely evaluate the overhead introduced by virtual machines. Even
though the two machines have a Core 2 Quad CPU , each test has been performed

12 Two identical PCs have been used: one system has been compiled as 32 bit code,
the other one as 64 bit code.

13 Compiled using GNU gcc version 4.2.
14 Since version 2.6.25 for 32 bit and since version 2.6.27 for 64 bit .



254 S. Cristofaro et al.

-0
10000

-0 10000
c:

9SOO c:
0 0 9500
u uv 9000 v 9000III III
'- 8SOO '-v v 8500a. a.
III 8000 III 8000c: c:
0 7500 0 7500';J

~co
7000a. 7000

a.
E 6SOO E 6500

8 0
6000 U 6000

FreeBSO I.IOS (3~ bll) FreeBSO MOS ('64bll)

F ig. 2. Benchmark results for the John The Ripper test

only without Symmetric Multi Processing, in order to make comparisons with
UML possible'".

Th anks to paravirtualization, as expected, all results are quite close to each
other. As it appears in the charts above (Figure 2), the overhead introduced by
virtualization systems is quite unimportant. In any case, 64 bit systems proved
to be far more performant .

As regards the LMbench memory mapping benchmark , an interesting differ
ence between host and guest , especially for UML, can be noticed. The bench
mark showed in the chart below is bui. mmap.rd , using the open2close opt ion.
This benchmark measures the bandwidth used to map a segment of a file to the
memory and read it . FUnction mm ap() belongs to a category of functions that
is one of the hardest to be managed by virtual machines. This happens because
virtu al machines can not access physical memory directly. Hence, analyzing its
behavior represents an excellent way to test system call management performed
by paravir tualized systems and , in particular , to test how efficient is the hyper
visor in managing it . As a matter of fact , this test is one of those in which Xen
and, even more, UML loose more with respect to the host .

As a comment to the charts (Figure 3), all guest virtualized systems are
sensitive to system call management . This is true especially for UML, due to
the fact that it manages all system calls in user space, through a set of data
st ructures, and this makes it quite slower than Xen. It is then possible to state
that memory mapping management is the Achilles' heel of virt ualized systems,
even if Xen can cope with it better than others.

The next test is about filesystem latency. The test intends to verify the per
forman ce of virtualized systems in managing loop files (as in virtualized systems
loop files act as virtual disks). In particular , the number of files created/ deleted

15 UML does not support SMP in skas4 mode. It was supported only it in TT mode,
but TT mode is no longer supported.



Virtual Distro Dispatcher: A Light-Weight Desktop-as-a-Service Solution 255

bw_mm apJd open2close - 32 bit bw_mmapJd open2close - 64 bit

512MB

256MB

128MB

64/4B

32/4B

16/4B

8/4B

4MB

2/AB

1 lAB

------------- .-----

512 MB -.
256MB .
128MB -
64/.B -.-32MB

16 MB -.
8MB ;-'\

4MB -.-~MB
.

1 MB .
0.00 5000,00

MBi s

10000,00 0,00 5000,00

MBls

10000,00

Fig. 3. Memory mapping benchmark results

files deleted per second - 64 bit

350000

300000

files created per second - 32 bit

160000

140000

1:10000

100000

1) 80000

'".. 60000

40000

u
sl:e

250000

200000
'!
§ 150000..

100000

50000

1k

"'"
4k

Fig. 4. Filesystem latency test results

per second is counted. The test has been repeated over files with different di
mensions. Since guest systems are located into loop files, this may affect the test
comparisons. In order to resolve this problem and to make tests comparable, a
loop file have been generated also for the host system, which is so in exactly the
same conditions of the guest. This test requires a destination directory where
the system may create and delete files. So, each test has been performed inside
each virtual machine. For the host system, the destination directory coincides
with the loop file!".

Results on Figure 4 show that the management of loop files in virtualized
systems has reached an optimal level, especially for Xen. It is even better than
the management of loop files made by the host system. This is because special
functions have been developed in order to address such a critica l issue. The test
shown below is on memory again.

16 All filesystems are ext3 .



256 S. Cristofaro et al.

bw_mem fep - 32 bit bw_mem fcp - 64 bit

-2S6J~B

128M B

64MB

32MB -
16MB -
8MB -
4 MB

2M B

1 MB

2S6l jB

128MB

64 lAB

32MB

16MB

8ldB

41jB

2ldB

lIj B

-
-

0.00 2000 ,00 4000 ,00

MBis
6000.00 0.00 2000,00 4000.00

IA Bis
6000.00

Fig. 5. Memory read/write speed test results

This test is useful to evaluate the overhead introduced for reading and writ
ing in memory (Figure 5), after space is allocated, hence it does not take into
account memory allocat ion, but only reading and writing speed. The test has
been repeated with segments of memory with different size, in order to evaluate
also the behavior of the system when cache is and is not functioning. Result s
show that the overhead is minimal and negligible, whatever the size iS17 •

The next test is about performance decay due to virtual network cards with
respect to physical network cards (Figure 6). The server is on a physical machine,
while the client is on a virtu alized machine. The two machines are connected via
Gigabit Ethernet switches and cables. The test shows that virtual machines, on
a physical network , do not introduce any significant overhead with respect to
physical machines connected on the same network. In the picture below, the blue
line represents the result of two physical hosts connected .

lat_tep via physical network - 32 bit

, I~B

2MB ...

4 MB

8M B

16MB

32MB

o 100 200 300 400 SOlI 600 100 BOO

mereseeones

lat_tep via physical network - 64 bit

1 MB

2MB ...

4MB

8MB

16 1AB

32 lAB

o 100 200 300 400 SOlI 600 100 eoo
microseconds

Fig. 6. Physical network latency test results

17 Because of hierarchical memory (especially the 8MB L2cache of the Q6600), results
of reading small segments of memoryare already in cache and henceobtained faster.



Virtual Distro Dispatcher: A Light-Weight Desktop-as-a-Service Solution 257

As it can be read in the man pages, lat.tcp is a client / server program that
measures interpro cess communicat ion latencies. The benchmark passes a mes
sage back and forth between the two processes (this sort of benchmark is fre
quently referred to as a "hot potato" benchmark). No other work is done in the
processes.

Another test could be the same of the previous, locally executed (i.e. both the
client and the server are located within the localhost ). There are no substant ial
differences for the systems involved in this test, apart from the fact that all data
transfers are not conveyed through a physical local area network but through a
virt ualized network too. So, the whole network traffic is in the localhost .

1 MB

2M B

4 MB

8MB

16 MB

12MB

o 10 20 30 40 50 60 70 eo 90 100

microseconds

1 MB

2M B

4 MB

8 MB

16MB

32/o1B

o 10 20 30 40 50 60 70 eo 90 100

microseconds

Fig. 7. Local host network latency test results

Test results on Figure 7 shows that the overhead is minimal and hence do not
represent a bottleneck.

As a final remark , one can say that tests performed on VDD showed a negli
gible overhead introduced by the use of virtuali zat ion. This is true in particular
for the tests hereby presented, which were selected based on the differences they
are able to show in a more remarkable way with respect to others. The overhead
may result significant only in part icular situations (e.g., 3D graphic develop
ment) , whereas performance at a desktop level is practically not affected. This
is certainly encouraging for continuing the research, particularly if it succeed in
showing more precisely the relation between system performance and desktop
performance (see Section VII).

6 Operational Costs Analysis

VDD is an inexpensive solution born from the idea of Trashware [1],[8]. Re
search pushed forward from considering money saving for setting up a complete
environment , to money saving for mainta ining and operating it. For example,
considering a LAN with 10 computers, three cases can be put to the test :



258 S. Cristofaro et al.

a) Buy 10 new PCs (no VDD)
b) Buy one new generation PC for the VDD server + 10 Trashware diskless

thin clients for free
c) Buy one new generation PC for the VDD server + 10 mini ITX stationsl''

Solution a is far more expensive than the others, both for initial costs and for
operational costs. In terms of initial costs, the cheapest solution is b, the only
cost being the hardware for the VDD server management station, with money
saving up to 83% with respect to a. This solution provides up to 18,5% for the
energy saving!". Replacing obsolete and maybe cumbersome thin clients with
mini-ITX terminals (solution c), money saving can be up to 72%. In this case,
energy saving can arrive up to 71 ,4% (always with respect to a).

About the cost of a system upgrade, with solution a, a global operating system
update has to be done on each PC, whereas with band c solutions , an upgrade
only involves the central server which is the VDD manager, since no operating
systems resides in any diskless thin client. In this case, the whole system will
result upgraded in one go.

A similar consideration can be done for hardware upgrade . Setting up VDD
requires the central station to be powerful enough so that no significant over
head could influence thin clients utilization. As soon as the need for a hardware
upgrade arises and/or more client stations are required , a more powerful central
server could be needed. In regard to server-side hardware upgrade, it reflects to
performance of all thin clients in one go, similarly to software upgrade. In regard
to client-side hardware upgrade , instead , modifications for each thin client would
be required . Economic-wise, this is not relevant , thanks to the reuse of hardware
components refurbished through Trashware. This provides a practically unlim
ited amount of hardware dismissed too early by individuals or companies, and
that are instead useful for building or upgrading VDD systems. In most cases,
companies dismiss computers that are absolutely not obsolete as they consider?".
Hardware reuse allows VDD thin clients to be upgraded and hence survive in
pretty much all failure cases, by using the massive amount of spare hardware,
produced by the current unsustainable production system, as a replacements
resource.

7 Future Works

Setting up VDD may be rather demanding for people not so familiar with
GNU/ Linux and quite a high level of experience is required to manage all spare
software components. One of the next step to further improve VDD is to de
velop a Graphical User Interface to make virtual machines dispatching as simple

18 More generally, low energy systemssuch as mini/nano/pico-I'I'X.
19 Considerations about energy cost analysis have been done consulting the

http ://www.eu-energystar.org/it/iL007c.shtml website. Each (thin client) station
has been considered to be powered on for 6 hours per day.

20 Social enterprises exist which work in refurbishing dismissed PCs thanks to Free
Software. One of those is Binario Etico, www.binarioetico.org



Virtual Distro Dispatcher: A Light-Weight Desktop-as-a-Service Solution 259

as possible. Possible directions are: a web-based control panel, accessible from
everywhere at any time and/or a host side interface to manage the whole en
vironment from the central station. Code in Python has started to be written
(having portability in mind).

As highlighted in Section V, it would be useful to explore more in depth
relations between system level and desktop level regarding performance. Map
ping application requirements to system specifications would help in designing
and tuning the system for best desktop performance. Another interesting goal
is to introduce High Availability Clusterization. VDD is managed by one cen
tral server at the moment. In [1], it was proposed to set up a HPC cluster like
OperrMosix [8] to boost the core system. Unfortunately, HPC clustering does not
have a wide interest any more, also due to the tremendous decrease of hardware
price. Research interests are now focused on High Availability Clusters instead
of HPC , in order to increase dependability and availability against failures [9].

As seen in Section 2, related work exists that consider dispatching desktops
on the Internet an important characteristic. VDD can technically do that, even
if this is not part of the research at the moment. It could be something to
look at in the future, provided that the study on mapping system and network
performance to desktop performance is carried out before. The high flexibility
offered by the VNC protocol may allow to dispatch virtual Linux distributions
over the Internet too. The only main difference is not to use obsolete computers
as clients in this case, as data compression requires more performant PCs.

Privacy issues can easily be addressed by VDD, both at a local and at a global
scale, simply by cyphering data. Although the whole system is quite safe, the
utilization of encrypted volumes as filesystem partitions (using algorithms like
AES-256), would give users the possibility to keep their data private and secure
from intruders. Not even the administrator, who is in charge of managing such
partitions, could be able to access data stored in them. This way, the well known
privacy issue raised by cloud computing can be effectively addressed.

8 ConcIusion

Intensely put to the test, VDD has proved to have wide margin to exploit as for
system and network performance. VDD can open new frontiers of virtualization
and distribution of resources by changing the way people resort to desktops.
While the present paper was about to be finished, authors received news from
NLnet foundation'" regarding a request for funds to support the project, made
by Binario Etico cooperative company/'' . NLnet decided to finance the project!

21 http: //www.nlnet.nl/NLnet foundation financially supports organizations and peo
ple that contribute to an open information society, in particular it finances projects
based on Free Software.

22 http :/ /www.binarioetico.org/ BinarioEtico cooperative companysellsproducts and
services exclusively based on Free Software and reuse of obsolete pes. It requested
NLnet foundation for money to finance VDD project.



260 S. Cristofaro et al.

VDD emphasizes t he importance of software over hardware. By using a new
way of man aging desktop environment software, VDD offers a te chnological point
of view focused on ecology and saving , without renouncing to productivity and
performance. Hardwar e development is closed to its sat urat ion. VDD is the proof
that software, in particular Free Software, can offer real ways to st imulate people
creativity and reach new tec hnological achievements .

References

1. Bertini , F., Lamann a, D., Baldoni , R.: Virt ual Distro Dispatcher: A costless dis
tributed virtual environment from Trashware. In : Stojmenovic, 1., Thulasiram, R.K. ,
Yang, L.T. , Jia, W., Guo, 1\1 ., de Mello, R.F. (eds.) ISPA 2007. LNCS, vol. 4742,
pp . 223-2 34. Springer, Heidelberg (2007)

2. Dike, J .: User Mode Linux, April 22. Bruce Perens' Open Source Series, p. 352.
Prent ice Hall PTR, Englewood Cliffs (2006)

3. Chisnall, D.: The Definitive Guide to the XEK Hypervisor, 1st edn., p. 320. Pren tice
Hall PTR, Englewood Cliffs (November 19, 2007)

4. Linux Terminal Server Proj ect , http://ww .ltsp . org
5. Popek, G.J. , Goldberg, R.P.: Formal Requirements for Virtu alizable Third Genera

tion Architectures. Communications of the ACI\1 17(7), 412-421
6. Rose, 1\1 .: (Indust ry Developments and Model) - Virtualized Client Computing: A

Taxonomy (December 2007),
http://ww .idc.com/getdoc.jsp?containerId=209671

7. Hewitt , C.: ORGs for Scalable, Robust , Pr ivacy-Friendly Client Cloud Computing.
IEEE Internet Compu ting , 96-99 (September/ October 2008)

8. Russo, R., Lamanna, D., Baldoni, R.: Distributed software platforms for rehabil
itating obsolete hardware. In: OSS 2005: Proceedings of The First International
Conference on Open Source Systems, pp. 220--224 (2005)

9. Cully, E., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N.: Remus: High Avail
ability via Asynchronous Virtual Machine Replication. In: Proceedings of the 5th
USENIX Symposium on Networked System design and implementation, pp. 161-174
(Awarded Best Paper)



On Cost Modeling for Hosted Enterprise
Applications

Hui Li and Daniel Scheibli

SAP Research , Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany
hui.li~computer.org

Abstract. In enterprises nowadays typical business-critical processes
rely on OLTP (online transaction processing) type of applications. Of
fering such applications as hosted solutions in Clouds rises many tech
nical and non-technical challenges, among which TCO (Total Cost of
Ownership) is one of the main considerations for most on-demand ser
vice/Cloud providers. In order to reduce TCO, a first step would be to
analyze and study its cost components in depth. In this paper we adopt
a quantitative approach and model two tangible cost factors , namely,
server hardware and server power consumption. For server hardware, on
one hand , a pricing model for CPU is proposed as a function of per-core
performance and the number of cores, which also manifests the current
multi- / many-core trend . Server power consumption, on the other hand,
is modeled as a function of CPU utilization (as a main indication of sys
tem activity) . By using published results from both vendor-specific and
industry-standard benchmarks such as TPC-C, we show that a family
of Power functions is successfully applied in deriving a wide range of
cost models. Such analytic cost models, in turn , prove to be useful for
the Cloud providers to specify the Service Level Agreements (SLAs) and
optimize their service/infrast ructure landscapes .

1 Introduction

Cloud computing represents the next wave of IT industry transformation by
delivering services and computing as utilities over the Internet [1]. When the
services and infrastructure are available in a pay-as-you-go manner to the general
public, it is called a Public Cloud. The Private Cloud, on the other hand , refers to
the internal services and resources ofITO (IT Organization) in a business which
arc not available to the public. Public cloud, such as Amazon Web Services,
proves to be a sustaining business model for applications such as Web 2.0, testing
and development, and certain data-intensive /Hl'C applications. ITOs can also
outsource some of its non-critical processes from its Private Cloud to a Public
one for elasticity and cost-saving considerations.

Despite the success of on-demand solutions for certain functionalities such
as HR and CRM, business/mission critical applications remain largely to be
deployed on-premise, especially for large organizations. For small and medium
enterprises (SMEs), however, there is a market that the whole suite of business

D.R. Avresky et al. (Eds.) : Cloudc omp 2009 , LNICST 34, pp. 261-269, 2010.
© Institute for Computer Scien ces , Social-Informatics and Telecommunications Enginee ring 2010



262 H. Li and D. Scheibli

applications be offered as hosted solutions. Apart from the challenges arise from
security and multi-tenancy, TCO (Total Cost of Ownership) is one of the main
considerations for anyon-demand provider for such applications. This applies
to both SaaS/Public Clouds for general offerings and Private Clouds that serve
the LoBs (Line of Business).

For the Cloud providers to specify the Service Level Agreements (SLAs) and
optimize their service/infrastructure landscapes [4], it is of crucial importance to
analyze, understand, and model cost components within the TCO. This paper
focuses on the cost modeling for hosted OLTP applications on both public and
private Clouds. TCO is intrinsically complex and involves a great deal of tangi
ble/intangible factors . Rather than providing a comprehensive TCO model, this
paper focuses mainly on the quantitative aspects and models two tangible cost
components, namely, server hardware and server power consumption . Firstly, a
pricing model for CPU is proposed as a function of per-core performance and
the number of cores. The per-core performance is based on the published results
of industry-standard OLTP benchmark TPC-C [11] on Intel DP/MP platforms .
The fitted CPU pricing model also manifests the current multi-/many-core trend.
Secondly, server power consumption is modeled as a function of CPU utilization
using a customized Power function. By combining the fitted models for both
CPU costs and power consumption, we have developed a simplified analytic
model for hosted OLTP applications that incorporates hardware and operation
costs.

The rest of the paper is organized as follows: Section 2 develops a CPU cost
model based on the certified results of TPC-C benchmarks on Intel DP/ MP plat
forms. Section 3 conducts customized performance tests and models the server
power consumption in relationship to the CPU utilization as the main indicator
for system activity. Section 4 presents the combined cost model for OLTP ap
plications in a hosted environment, and discusses its context and applicability.
Conclusions and future work are presented in Section 5.

2 Modeling CPU Costs for OLTP Applications on
Multi-core Platforms

Among the many components of server hardware, namely CPU, memory, stor
age, and network, we focus on the CPU costs in this paper and make simplified
assumptions that costs of other components remain constants or scale with the
CPU costs. We are particularly interested in the price-performance relationship
on multi- yrnany-core platforms, as the general trend in processor development
has been from single-, multi-, to many cores. Our goal is to investigate and
model the relationship between the objective, namely the price per-CPU (Ccpu )

or price per-core (Ccore ) , and the two related parameters: number of cores (Ncor c )

and benchmark results per-core (Tcor e ) . Tcore also corresponds to the processing
speed of the core, and thus the resource demands of the measured OLTP ap
plications . If we model the application system as a closed multi-station queuing
center , Tcore is theoretically bounded by 1/D, where D is the resource demand



On Cost Modeling for Hosted Enterprise Applications 263

(I) TPC-C 00 InlelXeonOP
1COl) '400

_ 120) ~::=: .... 1200

~ '<xx> :::===--" ",I '<xx> ~(f) eClO .. eoDm
~ C

."" 1- '" 600 11 400 c'::.. ..... · 400 , ..,

~ ' ~

0- ,- - 2 ..--- 0
umbelofcores

(b) TPC-e on Intel XeonMP (c) TPC-C on Intel XIOOOP WIth 4 COUtS

I~-1- /1""[ ~tr~ · ; ,· i fl~~.t
.. ""_:::,:= -= _... 0: '('J~r~ttt- -:'"

0 , 2 • e 1M 233 26e 283 300 311S
Nurrber 01cor.. CPUfrequency(GHl)

Fig. 1. 117 certified TPC-C benchmark results run on Intel Xeon DP/ MP platforms
within the timeframe between 7/2002 and 12/2008. TPC-C is measured in transactions
per minute (tpmC). Such a throughput measure is defined as how many New-Order
transactions per minute a system generates while executing other transactions types.

(minimum response t ime) of th e applicat ion on the server. This gives a general
idea on the relationship between the performance model and the cost model,
whose object ives are conflicting with each other. In this sect ion we focus on
modeling the CPU costs P given the number of cores and benchmark results
per-core for OLTP applications.

We examine the cert ified TPC-C [11] benchmark results on Intel DP / MP
platforms and associate them with CPU price informat ion [7], which are shown in
Figure II. As there are two independent parameters (Neore and Teore ) involved,
we study one of th em by fixing th e value of the other. and vice versa.

Fir stly let us look at th e price versus the number of cores given a similar
per-core performance. In I (a), we can see that the per-core price decreases as
the number of cores per CPU increases on the Intel Xeon DP platform. As
the per-core performance of TPC-C remains the same, th e price/performance
ratio improves by adding more cores. Generally this trend also applies to TPC
C on Intel MP as shown in Figure I (b). We notice t hat t he per-core tpmC
decreases slightly as the number of cores increases. This is because that th e
core frequency scales down as th e number of cores scales up, which is shown
in Table 1. Nevert heless, as the chip design becomes better and more efficient,
th e per-core performance/frequency rati o (r ) improves along the evolution of
generations. From a customer perspective this does not mean that the response
time of a single application can improve as the resource demand decreases only by
increasing the core speed. The main benefit is on the much improved throughput
numbers per CPU price.

Secondly let us examine the price versus the per-core performance given th e
same number of cores. In Figure 1(c), as predicted, we can see that th e price
increases as the CPU frequency and throughput numbers increase. SOHle abnor
mal behavior happens between 2.33 GHz and 2.83 GHz. This may be explained

1 Disclaimer: The performance in tpmC is influenced by additional factors like machine
architecture, cache sizes, memory size/latency/ bandwidth, operating system, storage
system characteristics, DBMS, TPC-C version/ sett ings as well as other factors not
mentioned here. Vendor-specific benchmarks [9] and certified results [10] are also
studied and the results are not published here.



264 H. Li and D. Scheibli

Table 1. CP u frequency and the performance/frequency ratio : r = Tcore/GHz

Benchmark

tpcc/DP (GHz) 3.4 3.0 3.16 -
tpcc/DP (1' ) 9.5 12.7 10.9 -

tp cc/Mf (GHz) 3.33 3.0 2.93 2.66
t pcc/ MP (1') 8.7 7.6 9.6 10.0

.--
.:«:_... ,-

Pre. QlV9"'l , mit,rper-oort D&rtormanee,
,

35

.'

a
: H

tpmC pt r-cOtel 10'

KIO . + OP t-ee-e
"' 16 0, 3 6, 1S2)

,1!OO - 0 OP"-core
8 700- • • ' 15 7. 3 . 5ll1

'" " ""p 1-<0<.
~ 600' - (66, I 6, ·:81

§ 500'

~ '00 '

i 300'

:00 :. _... _ _

'00
=.::.=:.-:-:-- ---::''''-----:-:-- -:-- --=-:,.-

Fig, 2. Fitted power function parameters are ( Cl ' C2 , C3) as appeared in Equation 1

TPC-C Of' Il'lIlI Xton C)p TPC-C on(nlt' XeonOP

NV!TWofcorn
I I

tQmC1 10000

- :500

~ 2000 ~
:>
; 1500 ..

~ 1000-

§. 500-

i i

Fig. 3. Th e fitted cost models for price per-core (Ceore) and price per-CPU (Ccpu)

partially by the noise in the data as there is only one available measurement each
for CP U frequency at 2.33 GHz and 2.83 GHz. Nevertheless, the general trend
of price increasing with speed (core frequency) st ill holds. Figure 2 gives a bet
ter view on the pattern of how price changes with the per-core performance for
TPC-C. On both DP and MP platforms with different cores, the per-core price
scales with the per-core throughput like a power function . We studied different
functions for curve fitting, including polynomial, exponent ial, power, and other
custom functions. It is found that t he power function , shown in Equation 1, gives
the overall best fit for different data sets.

(1 )



On Cost Modeling for Hosted Ent erprise Applications 265

Table 2. CP U cost model parameters for TPC-C on Int el Xeon DP (Equation 3)

Figure 2 also shows that the price per-core decreases like a power function while
increasing the number of cores per-CPU. T his indicates that t he power funct ion
(Equ ation 1) can be used to model the relationships between price per-core and
throughput perform ance/number of cores individually.

The next step is to st udy per-core perform ance (Teore) and numb er of cores
(N eore) jointly and model their relat ionship with price. Since the power function
is the best fitted model for T eore and N eore indiv idually, we can extend t his
model to a multi-variable case", A power funct ion with two variables can be
formulated as follows:

C eore = g (T eore, N eore ) =
cI T~gre + c3N~~re + Cs,

(2)

where (CI' ..., cs) are t he parameters to be fit ted. The price per-CPU Cepu is
readily obtained by multiplying price per-core with t he numb er of cores:

(3)

Figure 3 shows the fitting of TPC-C/DP data with the cost models C eore and
Cepu ' A non-linear least- squares method in the Matlab Optimizat ion toolbox
is used for curve fittin g, and th e fitted parameters are shown in Table 2. We
can see that t he fitt ed model gives an overall good interpol ation of real bench
mark result s. The trend/relationship between price and the two factors , namely
perform ance per-core and numb er of cores, is well capt ured. Although different
benchmark s on different platforms may yield different parameters'' , the model
shown in Equ ation 3 is genera l and flexible enough for est imating a wide range
of CP U cost information.

It should be noted that th e power-fun ction based model for CPU costs devel
oped in this section depends on th e Int el pricing schemes for its multi -yrnany-core
platforms. Our cont ribution is to fit such price information with mathemat ical
models, in relationship to real OLTP benchmark results. Thi s gives the plan
ners/ archit ects at the provider side a convenient tool for est imating hardware
costs given the desired perform ance level of their applications.

2 An informal proof for this extension can be described as follows: When x or y is
constant , either f (x) or f(y) takes the form axb+ c. This means th ere is no x or
y components of any form in th e function other th an xb or yd. So f( x ,y) can be
written as axb+cyd +e.

3 Th ere are no sufficient data for curve fittin g of TPC-C benchmark on Intel MP
platform.



(4)

266 H. Li and D. Scheibli

Table 3. Power consumption model parameters for a customized OLTP application
(Equation 5)

3 Modeling Power Consumption

Power consumption and associated costs become increasingly significant in mod
ern datacenter environments [6]. In this section we analyze and model the server
power consumption of OLTP applications. We study the relationship between
system power consumption (Psy s , measured in Watts) and CPU utilization (U),
which is used as the main metric for system-level activity. Our experimental
methodology and tooling are largely similar to the ones in [5,6], except that we
focus on OLTP-like workloads. We run a customized OLTP application similar
to sales and distribution business processes, on a 64-bit Linux server with 1 Intel
dual-core CPU and 4 GB main memory. The system power is measured using a
power meter connected between the server power plug and the wall socket. The
CPU utilization data is collected using Linux utilities such as sar and iostat.
Monitoring scripts in SAP performance tools are also used for correlating power
and CPU utilization data.

Before data fitting and modeling we first perform a data pre-processing step
called normalization. Instead of directly modeling P sys we use a normalized
power unit Pn or m , which is defined as follows:

p _ P sy s - Pidle

norm - P busy - Pidle '

where the measured P idl e (U = 0) and Pbusy (U = 1) for our test system are
42W and 84W, respectively. The normalized measurement results are shown in
Figure 4.

Generally speaking the server power consumption increases as the CPU uti
lization grows. One particular important finding from the measurement data is
the so-called power capping behavior [6], which means there are few times that
the highest power is consumed by the server. Additionally we find that such
highest power points are drawn mostly when the CPU utilization is higher than
80% and they have very similar peak values. Most of the common functions, such
as quadratic polynomial, power, exponential , and Gaussian , cannot fit such flat
curve of power values in the high-utilization interval (see the quadratic fitting
in Figure 4).

We developed a model that can fit such power-capping behavior well. The
model is inspired by the frequency response curve of a linear filter called Butter
worth filter. It has such desired "flat" behavior in the passband of the frequency.
We replace the polynomial part of the transfer function with the following cus
tomized power function which has two U components:

(5)



On Cost Modeling for Hosted Enterprise Applications 267

• data
- Custom tunhon

:;; O.B - - - Quadratic

~

1::1' :.::...:.
o or·" -a ,

Z 0 2[ '. ~. -.':;-

0',

o 0.2 0.4 0.8
CPUUtiUzallon

O.B

Fig. 4. Normalized system power relates to CPU utilization. The custom function is
shown in Equation 6.

where (CI ' ..., C5) are the parameters to be fitted. The model that relates normal
ized power (Pnorm) and CPU utilization U can be formulated as follows:

Pnorm(U) = 1 - h(U)-I . (6)

The fitting result is shown in Figure 4 and the fitted model parameters are listed
in Table 3. We can see that the proposed power model fits the measurement data
well, especially during the high utilization period. Given the measurements for
Pidle and Pbusy, the overall system power consumption Psys can be obtained by
substituting Pnorm (Equation 6) in Equation 4.

4 A Cost Model for Enterprise Applications

By combining the cost models for CPU and power consumption in previous
sections (equations (3), (4), and (6)), we developed a cost model for business
applications:

Cost(Tcore, Ncore' U,1) =

pO +PICcpu+P21 Psys(U(t))dt,
tEl

(7)

where t is the measurement time , I is the measurement period (t E 1), Po is an ad
justing constant , PI, and P2 are the weighting parameters that scale the individual
model outputs. Ifduring the measurement period only average utilization is avail
able, the output can be written as Psys(1I)! .The model in (7) uses an additive form
to combine server hardware costs and operational costs, in which parameters PI
and P2 have to be set properly to reflect different cost structures.

To summarize from a mathematical modeling perspective, we can conclude
that the power function (CIX C2 + C3) and its variants have attractive proper
ties for fitting a wide range of curves, including both single- and multi-variable
case. Thus, the power function family represents a general and flexible modeling
library from which different cost models can be fitted and derived.



268 H. Li and D. Scheibli

COilmcx:ell lu(- COSl . opet"~lon-eosl • 7 3)

Fig. 5. Cost model structures: For a typical "classical" data center, the ratio of fixed
cost versus operational cost (r) is set to 7 : 3. For a modern commodity-based data
center, the ratio r is set to 3 : 7

Inpractice when using the cost model for the optimization ofenterprise systems,
we need to determine the weighting parameters Pi (fixed cost) and P2 (operational
cost). These parameters are chosen in a way to reflect the real numbers obtained
in case studies in [3] . There are two situations under study in this paper. On one
hand, for a typical "classical" data center the ratio of fixed cost versus operational
cost (r) is set to 7 : 3, which indicates that the high server capital costs dominate
overall TCO by 70%. For a modern commodity-based data center, on the other
hand, the ratio r is set to 3 : 7. This means operational costs including power
consumption and cooling become the dominating factor . The cost model outputs
of (7) for these two situations are illustrated in Figure 5, where differences can
be clearly identified. For instance, the total cost increases significantly with the
increasing system utilization for the high operational cost situation (r = 3 : 7),
which is not the case for the high fixed cost counterpart(r = 7 : 3). Wealso observe
that the discontinuity of cost model outputs along the performance/core axis in
the r = 3 : 7 situation. This is because the settings of P idl e and Pbusy take discrete
values like a piecewiseconstant function. The CPU performance per core isdivided
into three ranges and the values of Pidle and Pb usy are set accordingly. For instance,
for a 2-core system from low to high performance, Pidle and Pbusy have been set
to [40,60,80] and [65, 95, 150], respectively. Such settings are made in accordance
to the CPU power consumption characteristics on Intel platforms. In the r = 7 :
3 situation, however, such effects is dramatically reduced as the operational cost
is no longer dominant. In our ongoing research we investigate both situations in
the optimization phase to see how different cost structures impact the SLA-driven
planning on the service provider side.

5 Conclusions and Future Work

In this paper we developed a analytic cost model that consists of two tangible cost
components: server hardware and power consumption. The CPU price is modeled
as a function of number of cores and per-core throughput performance for OLTP
applications. The server power consumption is modeled as a function of CPU



On Cost Modeling for Hosted Enterprise Applications 269

utilization. Both models include Power function or its variants as components,
which indicates that Power function as a mathematical form is suitable to fit a
wide range of cost structures.

Cost modeling is one important enabling component in our ongoing work
on SLA-driven planning and optimization of hosted business applications [8].
Service-LevelAgreements (SLA) are bidding contracts between service consumer
and service provider on guarantee terms such as performance and cost. In our
view well-specified SLAs are important, even indispensable components for mak
ing utility-driven SOA and Cloud computing a success. SLAs can also be applied
between layers and IT stacks in a provider's landscape . For enabling SLA-aware
planning and optimization studies on the provider side, practical models are
needed to encapsulate performance information , cost information , and other fac
tors . The proposed cost model is utilized in our studies in optimizing a system
landscape running OLTP applications by taking multiple conflicting objectives
into account.

References

1. Above the clouds: A berkeley view of cloud computing. Tech. Rep. UCB/EECS
2009-28, University of California, Berkeley (2009)

2. Barroso , L.: The price of performance: An economic case for chip multiprocessing.
ACM Queue 3(7), 48-53 (2005)

3. Barroso , L.A., Holzle, U.: The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines. Morgan & Claypool, San Francisco (2009)

4. Chase, J .S., Anderson, D.C., Thakar, P.N., Vahdat , A., Doyle, R.P.: Managing
energy and server resources in hosting centres . In: Proc . of SOSP, pp. 103-116 .
ACM, New York (2001)

5. Economou , D., Rivoire, S., Kozyrakis , C., Ranganathan, P.: Full-system power
analysis and modeling for server environments. In: Proc. of Workshop on Modeling,
Benchmarking and Simulation, MOBS (2006)

6. Fan, X., Weber , W.-D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer. In: Proc . of the 34th IntI. Sym. on Computer Architecture (ISCA 2007),
pp. 13-23. ACM Press, New York (2007)

7. b"TEL. Intel processor pricing , 2007-2009, http ://www . intc . com/priceList . dm
(accessed March 2009)

8. Li, H., Theilmann, W. , Happe, J .: SLA Translation in Multi-layered Service Ori
ented Architectures: Status and Challenges . Tech. Rep. 2009-08, University of Karl
sruhe , Germany (2009)

9. Marquard, U., Goetz , C.: SAP Standard Application Benchmarks - IT Benchmarks
with a Business Focus. In : Kounev , S., Gorton, 1., Sachs, K. (eds.) SIPEW 2008.
LNCS, vol. 5119, pp . 4-8 . Springer, Heidelberg (2008)

10. SAP. The Sales and Distribution (SD) Benchmark, Two-tier Internet Configura
tion (2009), http://www.sap .com/solutions/benchmark/sd . epx (accessed March
2009)

11. TPC. TPC-C: on-line transaction processing benchmark V5 (2009),
http://www . tpc. org/tpcc/ (accessed March 2009)





Andreolini , Mauro 201
Arenas , Alvaro 167
Avresky, D.R. 186

Baldoni , R. 247
Bertini , F . 247
Bunch, Chris 57

Casola, Valentina 93
Casolari, Sara 201
Chohan, Navraj 57
Colajanni, Michele 201
Conrad , Stefan 83
Cristofaro, S. 247
Cunsolo, Vincenzo D. 41

Daute, Oliver 83
Distefano, Salvatore 41

Ekanayake, Jaliya 20, 132
Epema, Dick 115

Author Index

Latanicki, Joseph 73
Li, Hui 261
Lin, Donghui 147

Massonet , Philippe 73
Messori, Michele 201
Montagnat, Johan 3
Mostafa , Nagy 57
Murakami , Yohei 147

Naqvi , Syed 73

Ostermann, Simon 115

Pang , Sydney 57
Post , Moritz 103
Primet, Pascale Vicat-Blanc 3
Prodan, Radu 115
Puliafito, Antonio 41

Rak , Massimiliano 93

Fahringer, Thomas 115
Fox, Geoffrey 20

Gabner, Rene 231
Geuer-Pollmann, Christian 217

Hummel , Karin Anna 231
Huu , Tram Truong 3

Iosup , Alexandru 115
Ishida, Torn 147

Karl, Wolfgang 132
Kipp , Alexander 167, 217
Koslovski, Guilherme 3
Kramer, David 132
Krintz, Chandra 57
Kunze , Marcel 132
Kurze , Tobias 132

Lamanna, D. 247
Laszewski, Gregor von 132

Scheibli, Daniel 261
Schubert, Lutz 167, 217
Schwefel, Hans-Peter 231
Simeonov, Dimitar 186
Soman, Sunil 57
Stuempert , Mathias 103

Tanaka, Masahiro 147
Tao, Jie 103, 132
Tusa , Francesco 73

Villano, Umberto 93
Villari, Massimo 73

Wang, Fugang 132
Wang, Lizhe 132
Wesner, Stefan 167
Wolski, Rich 57

Yigitbasi, Nezih 115

Zhao, Jiaqi 103


	Cover
	Lecture Notes of the Institutefor Computer Sciences, Social-Informaticsand Telecommunications Engineering 34
	CloudComputing
	ISBN-13 9783642126352
	Preface
	Organization
	Table of Contents
	The FEDERICA Project: Creating Cloud Infrastructures
	1 Introduction
	2 The FEDERICA Project
	2.1 Project Goals and Objectives
	2.2 Architecture
	2.2.1 Requirements
	2.2.2 Framework and Design


	3 The Infrastructure Implementation
	2.3.1 Topology
	2.3.2 Resource Virtualization and Slice Creation
	2.3.3 User Accessand Support

	3 Challenges
	3.1 Real vs. Virtual
	3.2 Virtualization Service Definition and Automation of Procedures
	3.3 Complexity

	4 Conclusions and Next Steps
	References

	Akamai and Cloud Computing
	Models of Computation in the Cloud
	Cloud Computing Enabling the Future Internet
	Cloud Computing InfrastructureTrack Session 1
	Executing Distributed Applications on Virtualized Infrastructures Specified with the VXDL Language and Managed by the HIPer NET Framework
	1 Introduction
	2 The Virtual Private eXecution Infrastructure Concept
	2.1 The VPXI Concept
	2.2 VXDL: VPXI Description Language
	2.3 VPXI Embedding Problem

	3 Application-Mapping Principles
	3.1 Workflow Language
	3.2 Workflow Translation into VXDL

	4 Medical Application Example
	5 Experiments in Grid'5000
	5.1 HIPerNet Framework and Grid'5000 Substrate
	5.2 Medical Imaging Application Deployment on the Testbed

	6 Related Work
	7 Conclusion and Perspectives
	References

	High Performance Parallel Computing with Clouds and Cloud Technologies
	1 Introduction
	2 Related Work
	3 Data Analysis Applications
	3.1 Cap3
	3.2 Iterative/Complex Style Applications

	4 Evaluations and Analysis
	5 Performance of MPI on Clouds
	6 Benchmarks and Results
	7 Conclusions and Future Work
	References


	Cloud Computing Platforms Track Session 1
	Cloud@Home on Top of RESERVOIR
	1 Introduction and Motivation
	2 Background
	2.1 RESERVOIR
	2.2 Cloud@Home

	3 RESERVOIR vs. Cloud@Home
	4 Synthesis: Implementing Cloud@Home on Top of RESERVOIR
	5 Conclusions
	References

	AppScale: Scalable and Open AppEngine Application Development and Deployment
	1 Introduction
	2 Google App Engine
	3 AppScale
	3.1 AppController (AC)
	3.2 AppLoadBalancer (ALB)
	3.3 AppServer (AS)
	3.4 Data Management
	3.5 AppScale Tools
	3.6 Tolerating Failures

	4 Evaluation
	4.1 Methodology
	4.2 Experimental Results

	5 Related Work
	6 Conclusions
	References


	Cloud Computing Infrastructure Track Session 2
	Mitigating Security Threats to Large-Scale Cross Border Virtualization Infrastructures*
	1 Introduction
	2 Related Works
	3 RESERVOIR - An Example of Large Scale Cross Border Virtualization Infrastructure
	4 Security Threats to RESERVOIR Infrastructure
	4.1 External Threats
	4.2 Internal Threats

	5 Mitigating Techniques for Security Threats
	5.1 Centralised or Decentralised PKI: Cross Certification?
	5.2 Ciphering: Communications, Data, Customer Data in the Management
	5.3 Virtual or Physical Firewalls
	5.4 Virtual Switches: VLAN in the Architecture
	5.5 Securing Migration of VEEs
	5.6 Mitigating Techniques through the OpenTC Solution

	6 Conclusions and Perspectives
	References

	Activity Control in Application Landscapes A Further Approach to Improving Maintainability of Distributed Application Landscapes
	1 Introduction
	2 Terms and Areas of Discussion
	3 The Idea
	4 Code of Business Processing
	5 Basic Elements of PAC
	6 Run-Control
	7 Improving System Maintainability
	8 Extensions for Frameworks
	9 Conclusion
	References

	PerfCloud: Performance-Oriented Integration of Cloud and GRID
	1 Introduction
	2 The PerfCloud Architecture
	3 PerfCloud Services
	4 PerfCloud Virtual Clusters
	5 The PerfCloudClient
	5.1 Management of GRID Access and Connections
	5.2 Management of PerfCloud Services
	5.3 User Utilities

	6 Related Work - Cloud Technologies
	7 Conclusions and Future Work
	References

	Combining Cloud and Grid with a User Interface
	1 Introduction
	2 g-Eclipse: Building a Framework to Access the Power of the Grid
	3 A Cloud Framework Based on g-Eclipse
	4 An Initial Implementation: Access the Amazon Web Service
	5 Conclusion
	References


	Cloud Computing InfrastructureTrack Session 3
	A Performance Analysis of EC2 Cloud Computing Services for Scientific Computing
	1 Introduction
	2 Amazon EC2
	3 Cloud Performance Evaluation
	3.1 Method
	3.2 Experimental Setup
	3.3 Experimental Results

	4 How to Improve Clouds for Scientific Computing?
	5 Related Work
	6 Conclusions and Future Work
	References

	Cyberaide Virtual Applicance: On-Demand Deploying Middleware for Cyberinfrastructure
	1 Introduction
	2 Background and Related Work
	3 Cyberaide: A Light Weight Middleware for Production Grid
	4 Cyberaide Virtual Appliance: On Demand Accessing Production Grids
	4.1 Evaluation of Tools
	4.2 Solution Description
	4.3 Scenario

	5 Performance Evaluation and Discussion
	5.1 Test of Cyberaide Virtual Appliance
	5.2 Test of Cyberaide Virtual Appliance on TeraGrid

	6 Conclusion and Future Work
	References


	Cloud Computing Platforms Track Session 2
	Service Supervision Patterns: Reusable Adaption of Composite Services
	1 Introduction
	2 Service Supervision
	2.1 Execution Control Functions
	2.2 Prototype

	3 Adaptation of Composite Service Using Execution Control
	3.1 Exception Handling
	3.2 Dynamic Change
	3.3 Human Involvement
	3.4 Monitoring
	3.5 Migration

	4 Service Supervision Patterns
	4.1 Trigger Patterns
	4.2 Evaluation and Retry Patterns
	4.3 Patch Patterns
	4.4 Granularity Control Patterns

	5 Related Works
	6 ConcIusion
	References


	Cloud Computing Platforms Track Session 3
	Self-managed Microkernels: From Clouds towards Resource Fabrics
	1 Misconceiving the Cloud?
	2 From Historical to Future Systems
	2.1 Classical Approaches
	2.2 Scoping Future Multi-core Systems

	3 The Monolithic Mistake
	4 Moving on to Micro-kernels
	4.1 SOA and Segmentation
	4.2 SOA and Operating Systems

	5 Principles of the Service-Oriented Operating System
	5.1 Microkemel Base Structure
	5.2 Relationship Analysis and Distribution
	5.3 Code and Data Segmentation
	5.4 Self-adaptive Microkernels

	6 Local Private Clouds (or Micro-Clouds)
	6.1 Elasticity in Self-managed Microkernels
	6.2 Open Issues
	6.3 Summary

	References

	Proactive Software Rejuvenation Based on Machine Learning Techniques
	1 Introduction
	2 Related Work
	3 Proactive VM-Rejuvenation Framework
	3.1 VM-Master and VM-Slave Components and Communication
	3.2 VM-Master Components
	3.3 VM-Slave Components

	4 Machine Learning Framework
	5 Lasso Regularization
	6 Experimental Setup
	7 Results
	8 Conclusion
	9 Future Work
	References

	Dynamic Load Management of Virtual Machines in Cloud Architectures
	1 Introduction
	2 Related Work
	3 Management Algorithms for Load Migration
	4 Selection of Sender Hosts
	5 Selection of Guests
	6 Conclusion
	References


	Cloud Computing Platforms Track Session 4
	Dynamic Service Encapsulation
	1 Introduction
	2 eBusiness and Web Services
	3 A Dynamic WS Interface
	The New Gateway Architecture
	Realisation of the New Gateway

	4 Trust Management
	5 Brave New World
	eBusiness and the New Gateway

	6 Conclusions
	References

	Modeling Movable Components for Disruption Tolerant Mobile Service Execution
	1 Introduction
	2 Related Work
	3 System Description
	4 Service Component Model
	4.1 Markov Model for Service Component Flow
	4.2 Service Success/Failure Model
	4.3 Execution Time Model

	5 Numerical Results
	5.1 Text Editor Example Service
	5.2 Numerical Results for Service Success Probability
	5.3 Numerical Results for Execution Time Analysis

	6 Conclusions
	References


	Cloud Computing Applications Track Session 1
	Virtual Distro Dispatcher: A Light-Weight Desktop-as-a-Service Solution
	1 Introduction
	2 Related Work
	3 Virtualization
	4 Extension of Functionalities
	5 Performance Analysis
	6 Operational Costs Analysis
	7 Future Works
	8 ConcIusion
	References

	On Cost Modeling for Hosted Enterprise Applications
	1 Introduction
	2 Modeling CPU Costs for OLTP Applications on Multi-core Platforms
	3 Modeling Power Consumption
	4 A Cost Model for Enterprise Applications
	5 Conclusions and Future Work
	References


	Author Index



